Abstract

The effect of thermal-induced motion on nano-particles in optical traps is examined theoretically. We derive the steady-state probability density for particles trapped by evanescent waves above a surface. In particular we investigate the enhancement of the gradient force by surface plasmon resonance in a gold film and its application to trapping nano-particles in solution. An expression is derived for the lifetime of nano-particles in the trap in terms of the ratio of the trap energy to the thermal energy. It is shown that this ratio should be 10 or greater for the nano-particles to remain in the trap.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and P. Reece, "Optical Micro manipulation takes hold," Nano Today 1, 18-27 (2006)
    [CrossRef]
  2. M. Uchida, M. Sato-Maeda, and H. Tashiro, "Whole-cell manipulation by optical trapping," Curr. Biol. 5, 380-382 (1995)
    [CrossRef] [PubMed]
  3. M-T. Wei, K-T. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express,  14,3056-3064 (2006).
    [CrossRef] [PubMed]
  4. S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996).
    [CrossRef] [PubMed]
  5. R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
    [CrossRef]
  6. M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
    [CrossRef] [PubMed]
  7. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
    [CrossRef] [PubMed]
  8. B. S. Zhao, Y-M. Koo, D. S. Chung, "Separations based on the mechanical forces of light," Analytica Chemica Acta 556, 97-103 (2006).
    [CrossRef]
  9. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8(1), 14-20 (1973).
  10. K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75, 594-612 (2004).
    [CrossRef]
  11. Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
    [CrossRef]
  12. Y. Harada and T. Asakura, "Dynamics and dynamic light-scattering properties of Brownian particles under laser radiation pressure," Pure Appl. Opt. 7, 1001-1012 (1998)
    [CrossRef]
  13. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, (Springer-Verlag, Berlin, 1984).
    [CrossRef]
  14. F. Reif, Fundamentals of statistical and thermal physics, (McGraw-Hill, Sydney, 1965).
  15. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  16. O. Tcherkasskaya, E. A. Davidson, and V. N. Uversky, "Biophysical constraints for protein structure prediction," J. Proteome Res. 2, 37-42 (2003).
    [CrossRef] [PubMed]
  17. L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
    [CrossRef]
  18. L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
    [CrossRef]
  19. W. Keyi, J. Zhen, and H. Wenhao, "The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip," Opt. Commun. 149, 38-42 (1998).
    [CrossRef]
  20. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  21. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
    [CrossRef] [PubMed]
  22. N. Calander and M. Willander, "Optical trapping of single fluorescent molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603 (2002).
    [CrossRef] [PubMed]
  23. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
    [CrossRef]
  24. R. Chang, "Optical force acting on a molecule near a metal sphere: effects of decay rate change and resonance frequency shift," Opt. Commun. 249, 329-337 (2005).
    [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, Sydney, 1975).
  26. A. Lasota and M. C. Mackey, Probabilistic properties of deterministic systems, (Cambridge University Press, 1985).
  27. H. Raether, "Surface plasma oscillations and their applications," in Physics of thin films, G. Hadd, M. H. Francombe, R. W. Hoffman eds., 9, 145 (1977).
  28. H. A. Kramers, "Brownian motion in a field of force and the diffusion model of chemical reactions," Physica 7, 284-304 (1940).
    [CrossRef]
  29. CRC Handbook of Chemistry and Physics, 87th ed., 2006-2007

2006

B. S. Zhao, Y-M. Koo, D. S. Chung, "Separations based on the mechanical forces of light," Analytica Chemica Acta 556, 97-103 (2006).
[CrossRef]

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

K. Dholakia and P. Reece, "Optical Micro manipulation takes hold," Nano Today 1, 18-27 (2006)
[CrossRef]

M-T. Wei, K-T. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express,  14,3056-3064 (2006).
[CrossRef] [PubMed]

2005

R. Chang, "Optical force acting on a molecule near a metal sphere: effects of decay rate change and resonance frequency shift," Opt. Commun. 249, 329-337 (2005).
[CrossRef]

2004

K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

2003

O. Tcherkasskaya, E. A. Davidson, and V. N. Uversky, "Biophysical constraints for protein structure prediction," J. Proteome Res. 2, 37-42 (2003).
[CrossRef] [PubMed]

2002

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

N. Calander and M. Willander, "Optical trapping of single fluorescent molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603 (2002).
[CrossRef] [PubMed]

2000

L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

1999

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

1998

W. Keyi, J. Zhen, and H. Wenhao, "The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip," Opt. Commun. 149, 38-42 (1998).
[CrossRef]

Y. Harada and T. Asakura, "Dynamics and dynamic light-scattering properties of Brownian particles under laser radiation pressure," Pure Appl. Opt. 7, 1001-1012 (1998)
[CrossRef]

1997

R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
[CrossRef]

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

1996

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

1995

M. Uchida, M. Sato-Maeda, and H. Tashiro, "Whole-cell manipulation by optical trapping," Curr. Biol. 5, 380-382 (1995)
[CrossRef] [PubMed]

1973

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8(1), 14-20 (1973).

1940

H. A. Kramers, "Brownian motion in a field of force and the diffusion model of chemical reactions," Physica 7, 284-304 (1940).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, "Dynamics and dynamic light-scattering properties of Brownian particles under laser radiation pressure," Pure Appl. Opt. 7, 1001-1012 (1998)
[CrossRef]

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Bustamante, C.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
[CrossRef] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

Calander, N.

N. Calander and M. Willander, "Optical trapping of single fluorescent molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603 (2002).
[CrossRef] [PubMed]

Chang, R.

R. Chang, "Optical force acting on a molecule near a metal sphere: effects of decay rate change and resonance frequency shift," Opt. Commun. 249, 329-337 (2005).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

Chen, H.

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

Chiou, A.

Chu, S.

R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
[CrossRef]

Chung, D. S.

B. S. Zhao, Y-M. Koo, D. S. Chung, "Separations based on the mechanical forces of light," Analytica Chemica Acta 556, 97-103 (2006).
[CrossRef]

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

Davidson, E. A.

O. Tcherkasskaya, E. A. Davidson, and V. N. Uversky, "Biophysical constraints for protein structure prediction," J. Proteome Res. 2, 37-42 (2003).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia and P. Reece, "Optical Micro manipulation takes hold," Nano Today 1, 18-27 (2006)
[CrossRef]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Gong, Z.

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

Gordon, J. P.

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8(1), 14-20 (1973).

Granzier, H. L.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
[CrossRef] [PubMed]

Harada, Y.

Y. Harada and T. Asakura, "Dynamics and dynamic light-scattering properties of Brownian particles under laser radiation pressure," Pure Appl. Opt. 7, 1001-1012 (1998)
[CrossRef]

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Karmenyan, A.

Kawata, S.

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Kellermayer, M. S. Z.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
[CrossRef] [PubMed]

Keyi, W.

W. Keyi, J. Zhen, and H. Wenhao, "The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip," Opt. Commun. 149, 38-42 (1998).
[CrossRef]

Koo, Y-M.

B. S. Zhao, Y-M. Koo, D. S. Chung, "Separations based on the mechanical forces of light," Analytica Chemica Acta 556, 97-103 (2006).
[CrossRef]

Kramers, H. A.

H. A. Kramers, "Brownian motion in a field of force and the diffusion model of chemical reactions," Physica 7, 284-304 (1940).
[CrossRef]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Larson, R. G.

R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
[CrossRef]

Li, Y.

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

Lou, L.

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

Luff, B. J.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

Ng, L. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

Nieto-Vesperinas, M.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Perkins, T. T.

R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

Reece, P.

K. Dholakia and P. Reece, "Optical Micro manipulation takes hold," Nano Today 1, 18-27 (2006)
[CrossRef]

Sato-Maeda, M.

M. Uchida, M. Sato-Maeda, and H. Tashiro, "Whole-cell manipulation by optical trapping," Curr. Biol. 5, 380-382 (1995)
[CrossRef] [PubMed]

Smith, D. E.

R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
[CrossRef]

Smith, S. B.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
[CrossRef] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

Tashiro, H.

M. Uchida, M. Sato-Maeda, and H. Tashiro, "Whole-cell manipulation by optical trapping," Curr. Biol. 5, 380-382 (1995)
[CrossRef] [PubMed]

Tcherkasskaya, O.

O. Tcherkasskaya, E. A. Davidson, and V. N. Uversky, "Biophysical constraints for protein structure prediction," J. Proteome Res. 2, 37-42 (2003).
[CrossRef] [PubMed]

Uchida, M.

M. Uchida, M. Sato-Maeda, and H. Tashiro, "Whole-cell manipulation by optical trapping," Curr. Biol. 5, 380-382 (1995)
[CrossRef] [PubMed]

Uversky, V. N.

O. Tcherkasskaya, E. A. Davidson, and V. N. Uversky, "Biophysical constraints for protein structure prediction," J. Proteome Res. 2, 37-42 (2003).
[CrossRef] [PubMed]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Wei, M-T.

Wenhao, H.

W. Keyi, J. Zhen, and H. Wenhao, "The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip," Opt. Commun. 149, 38-42 (1998).
[CrossRef]

Wilkinson, J. S.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

Willander, M.

N. Calander and M. Willander, "Optical trapping of single fluorescent molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603 (2002).
[CrossRef] [PubMed]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Xu, S.

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

Yang, K-T.

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Zervas, M. N.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

Zhao, B. S.

B. S. Zhao, Y-M. Koo, D. S. Chung, "Separations based on the mechanical forces of light," Analytica Chemica Acta 556, 97-103 (2006).
[CrossRef]

Zhen, J.

W. Keyi, J. Zhen, and H. Wenhao, "The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip," Opt. Commun. 149, 38-42 (1998).
[CrossRef]

Analytica Chemica Acta

B. S. Zhao, Y-M. Koo, D. S. Chung, "Separations based on the mechanical forces of light," Analytica Chemica Acta 556, 97-103 (2006).
[CrossRef]

App. Phys. Lett.

L. N. Ng, M. N. Zervas, and J. S. Wilkinson, and B. J. Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," App. Phys. Lett. 76, 1993-1995 (2000).
[CrossRef]

Biophys. J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Curr. Biol.

M. Uchida, M. Sato-Maeda, and H. Tashiro, "Whole-cell manipulation by optical trapping," Curr. Biol. 5, 380-382 (1995)
[CrossRef] [PubMed]

J. Proteome Res.

O. Tcherkasskaya, E. A. Davidson, and V. N. Uversky, "Biophysical constraints for protein structure prediction," J. Proteome Res. 2, 37-42 (2003).
[CrossRef] [PubMed]

Nano Today

K. Dholakia and P. Reece, "Optical Micro manipulation takes hold," Nano Today 1, 18-27 (2006)
[CrossRef]

Opt. Commun.

L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, "Propulsion of gold nanoparticles on optical waveguides," Opt. Commun. 208, 117-124 (2002).
[CrossRef]

W. Keyi, J. Zhen, and H. Wenhao, "The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip," Opt. Commun. 149, 38-42 (1998).
[CrossRef]

Z. Gong, H. Chen, S. Xu, Y. Li, and L. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Opt. Commun. 263, 229-234 (2006).
[CrossRef]

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

R. Chang, "Optical force acting on a molecule near a metal sphere: effects of decay rate change and resonance frequency shift," Opt. Commun. 249, 329-337 (2005).
[CrossRef]

Opt. Express

Phys. Rev. A

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8(1), 14-20 (1973).

Phys. Rev. E

R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, "Hydrodynamics of a DNA molecule in a flow field," Phys. Rev. E 55, 1794-1797 (1997).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

N. Calander and M. Willander, "Optical trapping of single fluorescent molecules at the detection spots of nanoprobes," Phys. Rev. Lett. 89, 143603 (2002).
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Physica

H. A. Kramers, "Brownian motion in a field of force and the diffusion model of chemical reactions," Physica 7, 284-304 (1940).
[CrossRef]

Pure Appl. Opt.

Y. Harada and T. Asakura, "Dynamics and dynamic light-scattering properties of Brownian particles under laser radiation pressure," Pure Appl. Opt. 7, 1001-1012 (1998)
[CrossRef]

Rev. Sci. Instrum.

K. Berg-Sørensen and H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75, 594-612 (2004).
[CrossRef]

Science

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, "Folding-unfolding transitions in single titin molecules characterized with laser tweezers," Science 276, 1112-116 (1997.
[CrossRef] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science 271, 795-799 (1996).
[CrossRef] [PubMed]

Other

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, (Springer-Verlag, Berlin, 1984).
[CrossRef]

F. Reif, Fundamentals of statistical and thermal physics, (McGraw-Hill, Sydney, 1965).

CRC Handbook of Chemistry and Physics, 87th ed., 2006-2007

J. D. Jackson, Classical Electrodynamics, 2nd ed., (Wiley, Sydney, 1975).

A. Lasota and M. C. Mackey, Probabilistic properties of deterministic systems, (Cambridge University Press, 1985).

H. Raether, "Surface plasma oscillations and their applications," in Physics of thin films, G. Hadd, M. H. Francombe, R. W. Hoffman eds., 9, 145 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The light intensity required to increase the density of particles (n=1.5) in water by a factor of 2.7 as a function of particle radius. The light intensity represents the power focussed into an area 1 square micron. The water temperature is 20 Celsius.

Fig. 2. (a).
Fig. 2. (a).

The calculated reflectivity of light from a thin gold film on a glass substrate covered with water. The gold film thickness t shown for each wavelength is close to optimum for strong surface-plasmon resonance. The refractive index of the glass was n=1.54 and that of water n=1.33; (b). The intensity (modulus square) of the electric field relative to the incident field above the gold film surface. At 630 nm wavelength the intensity increases by a factor of 29.2 and for 850 nm it increases by a factor 131.

Fig. 3.
Fig. 3.

The integral S(R) (eqn. 30) as a function of the ratio R of the maximum trap energy to the thermal energy.

Fig. 4.
Fig. 4.

The lifetime of a particle in a surface plasmon trap as a function of particle radius and laser intensity for two different wavelengths. (a) 630 nm wavelength, 50 nm thick gold film, incidence angle 70.5 degrees; (b) 850 nm wavelength, 60 nm thick gold film, incidence angle 63.39 degrees. The temperature was 20 Celsius and the particle refractive index was 1.5. The diffusion curve gives the time taken for the nano-particle to diffuse a distance equal to twice the evanescent field decay length in the absence of any trapping forces.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

F g = 2 παn c I
F s = 8 π 3 c k 4 n 5 α 2 S
α = a 3 ( ε s ε m ε s + 2 ε m ) .
I = ncε 0 2 E 0 2
I ( z ) = I ( 0 ) exp ( z δ )
δ = λ 4 π ε i sin 2 θ i ε t
S = 1 2 Re ( E x H * ) = I ( 0 ) Re [ ε t * ε t ( ε i sin θ i x ̂ ε t ε i sin 2 θ i z ̂ ) ] exp ( z δ ) .
F s = 8 π 3 c k 4 n 5 α 2 ε i sin θ i exp ( z δ ) I ( 0 ) x ̂ .
dx i dt = b i ( x i ) + σ ij ( x i ) ξ j ( t )
ξ i ( t ) = 0
ξ i ( t ) ξ j ( t′ ) = δ ij δ ( t t′ ) .
u ( x i , t ) t = 1 2 i , j 2 x i x j ( a ij ( x i ) u ( x i , t ) ) i x i ( b i ( x i ) u ( x i , t ) )
a ij ( x ) = k σ ik ( x ) σ jk ( x ) .
d 2 x i dt 2 + γ dx i dt = f i ( x i ) + q ξ i ( t )
q 2 = 2 γ k B T m
γ = 6 πηa m = k B T mD .
dx i dt = ( f i ( x i ) + q ξ i ( t ) ) γ .
u ( r , t ) t = D [ 1 k B T F ( r ) u ( r , t ) u ( r , t ) ]
u ( r ) = ( 1 k B T ) F ( r ) u ( r ) .
g ( r ) = β I ( r ) k B T .
u ( r ) = u ( r 0 ) exp ( β [ I ( r ) I ( r 0 ) ] k B T ) .
v = ( D k B T ) ( 8 π 3 c k 4 n 5 α 2 ) ( ε i sin θ i exp ( z δ ) ) I ( 0 ) x ̂
u ( z ) = u 0 exp ( 2 παn ck B T I ( 0 ) exp ( z δ ) ) .
u ( z ) u 0 = exp ( 5.72 × 10 11 a 3 I ( 0 ) exp ( z δ ) ) .
J = D ( β k B T dI ( z ) dz u ( z ) du ( z ) dz ) = D exp ( βI ( z ) k B T ) d dz ( exp ( βI ( z ) ) k B T u ( z ) )
J = D [ exp ( βI ( 0 ) k B T ) u ( 0 ) exp ( βI ( b ) k B T ) u ( b ) ] 0 b exp ( βI ( z ) k B T ) dz .
p = 0 b u ( 0 ) exp ( β ( I ( z ) I ( 0 ) k B T ) dz )
τ = p J = ( 1 D ) 0 b exp ( βI ( z ) k B T ) dz 0 b exp ( βI ( z ) k B T ) dz .
τ = δ 2 D S ( R )
S ( R ) = [ In R + n = 1 ( R n 1 ) nn ! ] [ InR + n = 1 (1) n ( R n 1 ) nn ! ] .

Metrics