Abstract

Particulate gold films were deposited on glass substrates by vapor deposition. Rabbit immunoglobulin G (IgG) was immobilized by physiosorption and then Alexa Fluor anti Rabbit IgG was bound to the protein-coated surfaces. Fluorescence was enhanced with increasing the Au thickness and reached saturation at 30 nm when Alexa Fluor555 anti IgG was used. We also examined the effect of silica spacers between the gold film and the labeled protein. The maximum enhancement was dependent on the thickness of silica and reach maximum at 10 nm. The maximum increase in intensity was about 6-fold. We also bound Alexa Fluor-680 anti IgG to the protein-coated surface, and the maximum enhancement was about 10-fold.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. van Dyke, Luminescence immunoassay and molecular applications, (CRC Press, Boca Raton, 1990).
  2. A. Hemmila, Application of fluorescence in immunoassays, (John Wiley & Sons, New York, 1992).
  3. N. J. Walker, "A technique whose time has come," Science 296, 557-559 (2002).
    [CrossRef] [PubMed]
  4. K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
    [PubMed]
  5. J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
    [CrossRef] [PubMed]
  6. K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
    [CrossRef] [PubMed]
  7. G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
    [CrossRef]
  8. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
    [CrossRef]
  9. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
    [CrossRef]
  10. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
    [CrossRef] [PubMed]
  11. T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003).
    [CrossRef]
  12. C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
    [CrossRef] [PubMed]
  13. P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
    [CrossRef] [PubMed]
  14. G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
    [CrossRef] [PubMed]
  15. T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006).
    [CrossRef] [PubMed]
  16. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262,137-156 (1998).
    [CrossRef] [PubMed]
  17. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 157-176 (1998).
    [CrossRef] [PubMed]
  18. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
    [CrossRef] [PubMed]
  19. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  20. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  21. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
    [CrossRef] [PubMed]
  22. A. Ulman, Formation and structure of self-assembled monolayers," Chem. Rev. 96, 1533-1554 (1996).
    [CrossRef] [PubMed]
  23. N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics," Chem. Rev. 105, 1547-1562 (2005).
    [CrossRef] [PubMed]
  24. N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001).
    [CrossRef]
  25. A. Gole, and C. J. Murphy, "Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization," Chem. Mater. 17, 1325-1330 (2005).
    [CrossRef]
  26. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
    [CrossRef] [PubMed]
  27. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
    [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, New York, 1998), pp. 136.
  29. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
    [CrossRef]
  30. J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
    [CrossRef]
  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, New York, 2006), pp. 954.
    [PubMed]
  32. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled-emission for sensitive fluorescence detection," Opt. Express,  13,8855-8865 (2005).
    [CrossRef] [PubMed]

2006 (5)

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

2005 (7)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics," Chem. Rev. 105, 1547-1562 (2005).
[CrossRef] [PubMed]

A. Gole, and C. J. Murphy, "Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization," Chem. Mater. 17, 1325-1330 (2005).
[CrossRef]

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
[CrossRef]

J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled-emission for sensitive fluorescence detection," Opt. Express,  13,8855-8865 (2005).
[CrossRef] [PubMed]

2004 (1)

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

2003 (3)

T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003).
[CrossRef]

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

2002 (2)

N. J. Walker, "A technique whose time has come," Science 296, 557-559 (2002).
[CrossRef] [PubMed]

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
[CrossRef]

2001 (2)

N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

1998 (3)

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262,137-156 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 157-176 (1998).
[CrossRef] [PubMed]

1996 (1)

A. Ulman, Formation and structure of self-assembled monolayers," Chem. Rev. 96, 1533-1554 (1996).
[CrossRef] [PubMed]

1995 (2)

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
[CrossRef]

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

1990 (1)

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

1981 (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Bazan, G. C.

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Blanchard-Desce, M.

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Cao, H.

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Cheng, P. P. H.

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

Chumanov, G.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
[CrossRef]

Cotton, T. M.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
[CrossRef]

Decher, G.

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Deetz, K.

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

Dick, L. A.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
[CrossRef]

Douglas, A.

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

Enderlein, J.

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

Fan, C.

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Fang, J. Y.

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Flood, S. J. A.

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

Fox, M. A.

T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003).
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001).
[CrossRef]

Geddes, C. D.

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

Giusti, W.

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

Gole, A.

A. Gole, and C. J. Murphy, "Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization," Chem. Mater. 17, 1325-1330 (2005).
[CrossRef]

Gregory, B. W.

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
[CrossRef]

Gryczynski, I.

J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Gryczynski, Z.

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Gu, T.

T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Haynes, C. L.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
[CrossRef]

Heeger, A. J.

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Hong, J. W.

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001).
[CrossRef]

Jennings, T. L.

T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006).
[CrossRef] [PubMed]

Kalyuzhny, G.

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Laczko, G.

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Lakowicz, J. R.

J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Livak, K. J.

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

Malak, H.

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Malicka, J.

J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

Marmaro, J.

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

Matveeva, E.

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

McFarland, A. D.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
[CrossRef]

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Mirkin, C. A.

N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics," Chem. Rev. 105, 1547-1562 (2005).
[CrossRef] [PubMed]

Murphy, C. J.

A. Gole, and C. J. Murphy, "Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization," Chem. Mater. 17, 1325-1330 (2005).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001).
[CrossRef]

Murray, R. W.

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

Neramourg, N.

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

Plaxco, K. W.

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Praho, R.

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Rosi, N. L.

N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics," Chem. Rev. 105, 1547-1562 (2005).
[CrossRef] [PubMed]

Ruckstuhl, T.

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Schneider, G.

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Silvester, D.

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

Singh, M. P.

T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006).
[CrossRef] [PubMed]

Sokolov, K.

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
[CrossRef]

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

Strouse, G. F.

T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006).
[CrossRef] [PubMed]

Ulman, A.

A. Ulman, Formation and structure of self-assembled monolayers," Chem. Rev. 96, 1533-1554 (1996).
[CrossRef] [PubMed]

van Duyne, R. P.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
[CrossRef]

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Walker, N. J.

N. J. Walker, "A technique whose time has come," Science 296, 557-559 (2002).
[CrossRef] [PubMed]

Wang, G.

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

Wang, S.

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Werts, M. H. V.

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Whitesell, J. K.

T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003).
[CrossRef]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

Wiczk, W.

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 157-176 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262,137-156 (1998).
[CrossRef] [PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 157-176 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262,137-156 (1998).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
[CrossRef]

Anal. Biochem. (5)

J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262,137-156 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 157-176 (1998).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998).
[CrossRef] [PubMed]

Chem. Mater. (2)

T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003).
[CrossRef]

A. Gole, and C. J. Murphy, "Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization," Chem. Mater. 17, 1325-1330 (2005).
[CrossRef]

Chem. Rev. (3)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005).
[CrossRef] [PubMed]

A. Ulman, Formation and structure of self-assembled monolayers," Chem. Rev. 96, 1533-1554 (1996).
[CrossRef] [PubMed]

N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics," Chem. Rev. 105, 1547-1562 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995).
[CrossRef]

J. Phys. Chem. A (1)

C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003).
[CrossRef]

J. Phys. Chem. B. (4)

P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006).
[CrossRef] [PubMed]

N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001).
[CrossRef]

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002).
[CrossRef]

J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005).
[CrossRef]

Nano Lett. (1)

G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

PCR Methods Appl. (1)

K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995).
[PubMed]

Phys. Rev. B (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981).
[CrossRef]

Phys. Rev. Lett. (3)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (1)

C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990).
[CrossRef]

Science (1)

N. J. Walker, "A technique whose time has come," Science 296, 557-559 (2002).
[CrossRef] [PubMed]

Other (4)

K. van Dyke, Luminescence immunoassay and molecular applications, (CRC Press, Boca Raton, 1990).

A. Hemmila, Application of fluorescence in immunoassays, (John Wiley & Sons, New York, 1992).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, New York, 1998), pp. 136.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, New York, 2006), pp. 954.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Scheme 1.
Scheme 1.

Fluoroimmunoassay model on a gold particle film.

Fig. 1.
Fig. 1.

Absorbance spectra of Au films of varying thickness, 2 nm, 5 nm, and 10 nm, deposited at 0.1 nm / 10 s on glass substrate.

Fig. 2.
Fig. 2.

AFM planar and 3D images of 2 nm Au film, 10 nm Au film, and 10 nm Au film coated by 10 nm silica.

Fig. 3.
Fig. 3.

Emission spectra of Alexa Fluor-555 labeled anti-Rabbit IgG on varying thickness gold films upon excitation at 514 nm. The inset represents the dependence of the enhancement factor on the thickness of gold film. All gold films were coated by 5 nm silica.

Fig. 4.
Fig. 4.

Dependence of enhancement factor on thickness of silica coated on a 10 nm gold film.

Fig. 5.
Fig. 5.

Recovered intensity decays for Alexa 555-IgG from the parameters in Table 1.

Fig. 6.
Fig. 6.

Emission spectra of Alexa Fluor-680 labeled anti-Rabbit IgG on a 50 nm gold film upon excitation at 610 nm. The inset represents the dependence of the enhancement factor on the thickness of gold film. All gold films were coated by 5 nm silica.

Tables (1)

Tables Icon

Table 1. Lifetime data obtained using the multi-exponential model for the fluorophore coated on the glass substrate or metal surface.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = i αi exp ( t τi )
< τ > = i αiτi
f i = α i τ i i f i τ i
τ ¯ = i f i τ i

Metrics