Abstract

Sensors based on surface plasmons or waveguide modes are at the focus of interest for applications in biological or environmental chemistry. Waveguide-mode spectra of 1 μm-thick pure and perforated silica films comprising isolated nanometric holes with great aspect ratio were measured before and after adhesion of streptavidin at concentrations of 500 nM. The shift of the angular position for guided modes was nine times higher in perforated films than in bulk films. Capturing of streptavidin in the nanoholes is at the origin of that largely enhanced shift in the angular position as the amplitude of the guided mode in the waveguide perfectly overlaps with the perturbation caused by the molecules. Hence, the device allows for strongly confined modes and their strong perturbation to enable ultra-sensitive sensor applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann, "Die Bestimmung optischer Konstanten von Metallen durch Oberflächenplasmaschwingungen," Z. Physik 241, 313-324 (1971).
    [CrossRef]
  2. H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
    [CrossRef]
  3. K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
    [CrossRef]
  4. S. G. Cloutier, A. D. Lazareck, and J. Xu, "Detection of nano-confined DNA using surface-plasmon enhanced fluorescence," Appl. Phys. Lett. 88, 013904-1-013904-3 (2006).
    [CrossRef]
  5. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
    [CrossRef]
  6. K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
    [CrossRef]
  7. R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
    [CrossRef]
  8. http://www.ohara-inc.co.jp/en/product/optical/list/s-lah.html
  9. B. R. Midmore, "Effect of aqueous phase composition on the properties of a silica-stabilized w/o emulsion," J. Colloid Interface Sci. 213, 352-359 (1999).
    [CrossRef] [PubMed]
  10. N. Fukuda, M. Fujimaki, K. Awazu, K. Tamada, and K. Yase, "High sensitive optical detection of bio-chemicals onto a silicon oxide surface based on waveguide mode," Mater. Res. Soc. Symp. Proc. 900, O12-39.1-6 (2006).
  11. Y. Terasaka, Y. Arima, and H. Iwata, "Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification," Anal. Biochem. 357, 208-215 (2006).
    [CrossRef]

2006 (1)

Y. Terasaka, Y. Arima, and H. Iwata, "Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification," Anal. Biochem. 357, 208-215 (2006).
[CrossRef]

2005 (1)

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
[CrossRef]

2004 (1)

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

2002 (1)

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
[CrossRef]

2000 (1)

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

1999 (1)

B. R. Midmore, "Effect of aqueous phase composition on the properties of a silica-stabilized w/o emulsion," J. Colloid Interface Sci. 213, 352-359 (1999).
[CrossRef] [PubMed]

1998 (1)

H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
[CrossRef]

1971 (1)

E. Kretschmann, "Die Bestimmung optischer Konstanten von Metallen durch Oberflächenplasmaschwingungen," Z. Physik 241, 313-324 (1971).
[CrossRef]

Arima, Y.

Y. Terasaka, Y. Arima, and H. Iwata, "Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification," Anal. Biochem. 357, 208-215 (2006).
[CrossRef]

Awazu, K.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

Brebner, J. L.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

Contolini, R. J.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
[CrossRef]

Fauchet, P. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
[CrossRef]

Ishii, S.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

Iwata, H.

Y. Terasaka, Y. Arima, and H. Iwata, "Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification," Anal. Biochem. 357, 208-215 (2006).
[CrossRef]

Knoll, W.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

Kretschmann, E.

E. Kretschmann, "Die Bestimmung optischer Konstanten von Metallen durch Oberflächenplasmaschwingungen," Z. Physik 241, 313-324 (1971).
[CrossRef]

Lau, K. H. A.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

Masuda, H.

H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
[CrossRef]

Midmore, B. R.

B. R. Midmore, "Effect of aqueous phase composition on the properties of a silica-stabilized w/o emulsion," J. Colloid Interface Sci. 213, 352-359 (1999).
[CrossRef] [PubMed]

Musket, R. G.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
[CrossRef]

Osaka, A.

H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
[CrossRef]

Porter, J. D.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
[CrossRef]

Roorda, S.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

Saarinen, J. J.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
[CrossRef]

Sander, M. S.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

Shima, K.

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

Sipe, J. E.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
[CrossRef]

Tamada, K.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

Tan, L. S.

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

Terasaka, Y.

Y. Terasaka, Y. Arima, and H. Iwata, "Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification," Anal. Biochem. 357, 208-215 (2006).
[CrossRef]

Weiss, S. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
[CrossRef]

Yada, K.

H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
[CrossRef]

Yoshiyama, J. M.

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
[CrossRef]

Anal. Biochem. (1)

Y. Terasaka, Y. Arima, and H. Iwata, "Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification," Anal. Biochem. 357, 208-215 (2006).
[CrossRef]

J. Appl. Phys. (1)

R. G. Musket, J. M. Yoshiyama, R. J. Contolini, and J. D. Porter, "Vapor etching of ion tracks in fused silica," J. Appl. Phys. 91, 5760-5764 (2002).
[CrossRef]

J. Colloid Interface Sci. (1)

B. R. Midmore, "Effect of aqueous phase composition on the properties of a silica-stabilized w/o emulsion," J. Colloid Interface Sci. 213, 352-359 (1999).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, "Highly sensitivive detection of processes occurring inside nanoporous anodic alumina templates: A waveguide optical study," J. Phys. Chem. B 108, 10812-108181 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
[CrossRef]

Opt. Express (1)

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, "Optical sensor based on resonant porous silicon structures," Opt. Express 10, 3754-3764 (2005).
[CrossRef]

Phys. Rev. B (1)

K. Awazu, S. Ishii, K. Shima, S. Roorda, and J. L. Brebner, "Structure of latent tracks created by swift heavy ion bombardment of amorphous SiO2," Phys. Rev. B 62, 3689-3698 (2000).
[CrossRef]

Z. Physik (1)

E. Kretschmann, "Die Bestimmung optischer Konstanten von Metallen durch Oberflächenplasmaschwingungen," Z. Physik 241, 313-324 (1971).
[CrossRef]

Other (3)

S. G. Cloutier, A. D. Lazareck, and J. Xu, "Detection of nano-confined DNA using surface-plasmon enhanced fluorescence," Appl. Phys. Lett. 88, 013904-1-013904-3 (2006).
[CrossRef]

http://www.ohara-inc.co.jp/en/product/optical/list/s-lah.html

N. Fukuda, M. Fujimaki, K. Awazu, K. Tamada, and K. Yase, "High sensitive optical detection of bio-chemicals onto a silicon oxide surface based on waveguide mode," Mater. Res. Soc. Symp. Proc. 900, O12-39.1-6 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental arrangement for the measurement in Kretschmann geometry.

Fig. 2.
Fig. 2.

(a). Calculated reflectivity as a function of the angle of incidence and the polarization for a typical sample as employed in the present investigations. Dips in the reflectivity are associated to be guided modes in the waveguide or to surface plasmon. (b). Amplitudes of excited guided modes. Glass prism, gold film, silica glass and water are lined from left to right. Each boundary is presented by a green line. Scale bars of the field strengths were shown on each right hand side.

Fig. 3.
Fig. 3.

Schematic of the supermolecule architecture of a silica film in preparation for streptavidin capture. A hydrophilic surface of a silica film was obtained in alkali solution. 3-aminoprophyltriethoxysilane (3APT) was used as the silane coupling agent. The 3APT-modified substrate was immersed in 0.5 mM 5-[5-(N-succinimidyloxycarbonyl) pentylamido]hexyl D-biotinamide (biotin-(AC5)2-OSu) solution in 1/5 M PBS buffer for amide coupling with the 3APT layer.

Fig. 4.
Fig. 4.

Top (left) and cross-sectional (right) view of a particular silica films. Here 137 MeV Au30+ ion bombardment was performed at a fluence of 5× 108 cm-2 followed by vapor etching.

Fig. 5.
Fig. 5.

(a). TE0 mode of the waveguide before (black) and after (red) modification with 500-μM biotin. Shift of the dip position was less than 0.01°. (b). TE0 mode of the silica waveguide substrate with a density of 1 ×1010 cm-2 holes before and after modification with 500-μM biotin.

Fig. 6.
Fig. 6.

TE0 modes of the waveguide modified with biotin. Black and red circles denote reflectivity before and after capture of 500 nM streptavidin. (a). No holes. (b). 7×109 holes cm-2.

Fig. 7.
Fig. 7.

Relative change in reflectivity (ΔR/R) of TE0 against hole density in the waveguide.

Metrics