Abstract

An output coupler comprising a resonant grating submirror monolithically associated with a standard multilayer submirror polarizes the emission of a Nd:YAG microchip laser linearly over its full emission bandwidth by intra-mirror destructive interference for the undesired polarization. A polarization extinction ratio of more than 25 dB is obtained up to 6.1μJ pulse energy. This passively Q-switched laser performance is almost identical to that of a gratingless non-polarized microchip laser. The design and fabrication of the resonant grating mirror are described.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow band resonant grating of 100% reflection under normal incidence

N. Destouches, J.-C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev
Opt. Express 14(26) 12613-12622 (2006)

Transverse-mode selective resonant grating-mirrors for high power and high brightness emission

Nikolay Lyndin, Thomas Kämpfe, Svetlen Tonchev, Stephanie Reynaud, and Olivier Parriaux
Opt. Express 23(13) 17275-17289 (2015)

High efficiency, high selectivity ultra-thin resonant diffractive elements

Svetlen Tonchev, Thomas Kämpfe, and Olivier Parriaux
Opt. Express 20(24) 26714-26724 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. N. Bel’tyugov, S. G. Protsenko, and Y. V. Troitsky, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206 (1992).
    [Crossref]
  2. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377 (1985).
    [Crossref]
  3. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
    [Crossref]
  4. I. A. Avrutsky and V.A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527 (1989).
    [Crossref]
  5. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607 (1986).
    [Crossref]
  6. J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
    [Crossref]
  7. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
    [Crossref]
  8. J. M. Ostermann, P. Debernardi, and R. Michalzik, “Surface-grating VCSELs with dynamically stable light output polarization,” IEEE Photon. Technol. Lett. 17, 2505 (2005).
    [Crossref]
  9. Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
    [Crossref]
  10. J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.
  11. F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
    [Crossref]
  12. A.V. Tishchenko and N. Lyndin, “The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !),” Workshop on Grating Theory, Clermont-Ferrand, France (June 2004).
  13. M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
    [Crossref]
  14. M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
    [Crossref]

2006 (1)

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

2005 (1)

J. M. Ostermann, P. Debernardi, and R. Michalzik, “Surface-grating VCSELs with dynamically stable light output polarization,” IEEE Photon. Technol. Lett. 17, 2505 (2005).
[Crossref]

2004 (1)

M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
[Crossref]

2003 (2)

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
[Crossref]

2000 (1)

F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
[Crossref]

1998 (1)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

1992 (1)

V. N. Bel’tyugov, S. G. Protsenko, and Y. V. Troitsky, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206 (1992).
[Crossref]

1989 (1)

I. A. Avrutsky and V.A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527 (1989).
[Crossref]

1986 (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607 (1986).
[Crossref]

1985 (2)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377 (1985).
[Crossref]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
[Crossref]

Abdou Ahmed, M.

M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
[Crossref]

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

Avrutsky, I. A.

I. A. Avrutsky and V.A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527 (1989).
[Crossref]

Baets, R.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Bel’tyugov, V. N.

V. N. Bel’tyugov, S. G. Protsenko, and Y. V. Troitsky, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206 (1992).
[Crossref]

Bisson, J.-F.

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Choi, Han-Woo

Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
[Crossref]

Debernardi, P.

J. M. Ostermann, P. Debernardi, and R. Michalzik, “Surface-grating VCSELs with dynamically stable light output polarization,” IEEE Photon. Technol. Lett. 17, 2505 (2005).
[Crossref]

Destouches, N.

J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Fuchs, J.

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
[Crossref]

Lee, Yong-Hee

Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
[Crossref]

Lee, Yong-Jae

Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
[Crossref]

Lyndin, N.

A.V. Tishchenko and N. Lyndin, “The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !),” Workshop on Grating Theory, Clermont-Ferrand, France (June 2004).

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607 (1986).
[Crossref]

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377 (1985).
[Crossref]

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607 (1986).
[Crossref]

Michalzik, R.

J. M. Ostermann, P. Debernardi, and R. Michalzik, “Surface-grating VCSELs with dynamically stable light output polarization,” IEEE Photon. Technol. Lett. 17, 2505 (2005).
[Crossref]

Ostermann, J. M.

J. M. Ostermann, P. Debernardi, and R. Michalzik, “Surface-grating VCSELs with dynamically stable light output polarization,” IEEE Photon. Technol. Lett. 17, 2505 (2005).
[Crossref]

Ouerdane, Y.

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
[Crossref]

Parriaux, O.

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
[Crossref]

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
[Crossref]

J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.

Pigeon, F.

M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
[Crossref]

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
[Crossref]

Pommier, J. C.

M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
[Crossref]

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

Pommier, J.C.

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607 (1986).
[Crossref]

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377 (1985).
[Crossref]

Protsenko, S. G.

V. N. Bel’tyugov, S. G. Protsenko, and Y. V. Troitsky, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206 (1992).
[Crossref]

Reynaud, S.

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

Song, Dae-Sung

Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
[Crossref]

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
[Crossref]

Sychugov, V. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
[Crossref]

Sychugov, V.A.

I. A. Avrutsky and V.A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527 (1989).
[Crossref]

Tishchenko, A. V.

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
[Crossref]

J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.

Tishchenko, A.V.

F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
[Crossref]

A.V. Tishchenko and N. Lyndin, “The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !),” Workshop on Grating Theory, Clermont-Ferrand, France (June 2004).

Tonchev, S.

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

Troitsky, Y. V.

V. N. Bel’tyugov, S. G. Protsenko, and Y. V. Troitsky, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206 (1992).
[Crossref]

Ueda, K.

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

Appl. Phys. B: Lasers and Optics (1)

J.-F. Bisson, O. Parriaux, J.C. Pommier, S. Tonchev, and K. Ueda, ”A polarization-stabilized microchip laser using a resonant mirror,” Appl. Phys. B: Lasers and Optics 85, 519 (2006).
[Crossref]

Appl. Phys. Lett. (1)

Dae-Sung Song, Yong-Jae Lee, Han-Woo Choi, and Yong-Hee Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182 (2003).
[Crossref]

IEEE J. Quantum. Electron. (1)

M. Abdou Ahmed, F. Pigeon, A. V. Tishchenko, O. Parriaux, Y. Ouerdane, S. Reynaud, J. C. Pommier, and J. Fuchs, “Polarizing grating coupler for high Q laser cavities,” IEEE J. Quantum. Electron. 39, 614 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (3)

F. Pigeon, O. Parriaux, Y. Ouerdane, and A.V. Tishchenko, “Polarizing grating mirror for CW Nd:YAG microchip laser,” IEEE Photon. Technol. Lett. 12, 648 (2000).
[Crossref]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-Gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205 (1998).
[Crossref]

J. M. Ostermann, P. Debernardi, and R. Michalzik, “Surface-grating VCSELs with dynamically stable light output polarization,” IEEE Photon. Technol. Lett. 17, 2505 (2005).
[Crossref]

J. Mod. Opt. (1)

I. A. Avrutsky and V.A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36, 1527 (1989).
[Crossref]

Opt. Acta (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta 33, 607 (1986).
[Crossref]

Opt. Commun. (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377 (1985).
[Crossref]

Proc. SPIE (2)

V. N. Bel’tyugov, S. G. Protsenko, and Y. V. Troitsky, “Polarizing laser mirrors for normal light incidence,” Proc. SPIE 1782, 206 (1992).
[Crossref]

M. Abdou Ahmed, J. C. Pommier, F. Pigeon, and O. Parriaux, “Flux resistance degradation in resonant grating multilayer mirror,” Proc. SPIE 5250, 229, Advances in Optical Thin Films; Claude Amra, Norbert Kaiser, H. Angus Macleod ;Eds. (2004).
[Crossref]

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886 (1985).
[Crossref]

Other (2)

J.-F. Bisson, O. Parriaux, N. Destouches, A. V. Tishchenko, and K. Ueda, “99% diffraction efficiency leaky mode sustained resonant gratings and susceptibility to laser damage,” Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005, Tokyo, 30 July-02 Aug. 2005, pp. 435–436.

A.V. Tishchenko and N. Lyndin, “The true modal method solves intractable problems: TM incidence on fine metal slits (but the C method also !),” Workshop on Grating Theory, Clermont-Ferrand, France (June 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Destructive interference polarizing mechanism resulting from the association of a multilayer submirror and a polarization selective resonant submirror.

Fig.2.
Fig.2.

Theoretical 0th order TM and TE reflection spectra and reflected ± 1st order TE diffraction efficiency with excitation from the substrate side.

Fig. 3.
Fig. 3.

Calculated electric field distribution of the two neighboring lowest order TE modes of the optimized structure giving rise to the spectra of Fig. 2.

Fig. 4.
Fig. 4.

RIBE etching rate calibration tests. (a) Chemically neutral argon ion beam, (b) 60% CF4 - 40% Ar ion beam.

Fig. 5.
Fig. 5.

3D representation of AFM topographic data. The measurement was performed with the intermittent contact mode using a high aspect ration silicon probe.

Fig. 6.
Fig. 6.

TE and TM reflected power at 1064nm versus incidence angle measured upon incidence from the air side.

Fig. 7.
Fig. 7.

Bottom curve: direction of polarization (measured from horizontal) versus angle α between the grating lines and the horizontal. The top curve represents the corresponding variation of the PER.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ = 2 k 0 ( n b w b + n w w w ) + π

Metrics