Abstract

Four procedures for simultaneous high-quality amplitude jitter reduction and extinction ratio enhancement of optical data streams are presented and studied using numerical simulations. They all rely on the use of a power-balanced NOLM, optionally followed by a polarizer. The setup can be operated in various regimes, leading to several switching characteristics with different merits in the frame of the proposed application. These are discussed and compared with the results obtained using other NOLM configurations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
    [CrossRef]
  2. E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001).
    [CrossRef]
  3. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
    [CrossRef]
  4. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of European Conference on Optical Communications (1998), pp. 475-476.
  5. T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
    [CrossRef]
  6. M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004).
    [CrossRef]
  7. M. Matsumoto, "Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration," Opt. Express 14, 11018-11023 (2006).
    [CrossRef] [PubMed]
  8. N. J. Doran and D. Wood, "Nonlinear optical loop mirror," Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  9. M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002).
    [CrossRef]
  10. M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
    [CrossRef]
  11. M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
    [CrossRef]
  12. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
    [CrossRef]
  13. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
    [CrossRef]
  14. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Theory of nonlinear loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 919-925 (2001).
    [CrossRef]
  15. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
    [CrossRef]
  16. A. Striegler and B. Schmauss, ‘‘Extinction ratio improvement by an advanced NOLM setup,’’IEEE Photon. Technol. Lett. 18, 1058-1060 (2006).
    [CrossRef]
  17. P. V. Mamyshev and N. A. Mamysheva, "Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing," Opt. Lett. 24, 1454-1456 (1999).
    [CrossRef]
  18. T. Sakamoto and K. Kikuchi, "Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching," IEEE Photon. Technol. Lett. 16, 545-547 (2004).
    [CrossRef]
  19. I. T. Lima, A. O. Lima, Y. Sun, H. Jiao, J. Zweck, C. R. Menyuk, and G. M. Carter, "A receiver model for optical fiber communication systems with arbitrarily polarized noise," J. Lightwave Technol. 23, 1478-1490 (2005).
    [CrossRef]
  20. A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
    [CrossRef]
  21. S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
    [CrossRef]

2006 (3)

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

A. Striegler and B. Schmauss, ‘‘Extinction ratio improvement by an advanced NOLM setup,’’IEEE Photon. Technol. Lett. 18, 1058-1060 (2006).
[CrossRef]

M. Matsumoto, "Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration," Opt. Express 14, 11018-11023 (2006).
[CrossRef] [PubMed]

2005 (4)

I. T. Lima, A. O. Lima, Y. Sun, H. Jiao, J. Zweck, C. R. Menyuk, and G. M. Carter, "A receiver model for optical fiber communication systems with arbitrarily polarized noise," J. Lightwave Technol. 23, 1478-1490 (2005).
[CrossRef]

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

2004 (4)

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
[CrossRef]

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004).
[CrossRef]

T. Sakamoto and K. Kikuchi, "Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching," IEEE Photon. Technol. Lett. 16, 545-547 (2004).
[CrossRef]

2003 (2)

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
[CrossRef]

2002 (1)

M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002).
[CrossRef]

2001 (2)

E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001).
[CrossRef]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Theory of nonlinear loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 919-925 (2001).
[CrossRef]

1999 (2)

P. V. Mamyshev and N. A. Mamysheva, "Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing," Opt. Lett. 24, 1454-1456 (1999).
[CrossRef]

M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
[CrossRef]

1997 (1)

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

1988 (1)

Attygalle, M.

M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002).
[CrossRef]

Bigo, S.

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

Bogoni, A.

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
[CrossRef]

Camas-Anzueto, J. T.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

Carter, G. M.

Centanni, J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Chraplyvy, A. R.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Ciaramella, E.

E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001).
[CrossRef]

Curti, F.

E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001).
[CrossRef]

Desurvire, E.

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

Doran, N. J.

Ghelfi, P.

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
[CrossRef]

Gutiérrez-Zainos, F.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

Haus, J. W.

Headley, C.

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Her, T.-H.

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Ibarra-Escamilla, B.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
[CrossRef]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Theory of nonlinear loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 919-925 (2001).
[CrossRef]

Jiao, H.

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Kikuchi, K.

T. Sakamoto and K. Kikuchi, "Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching," IEEE Photon. Technol. Lett. 16, 545-547 (2004).
[CrossRef]

Korneev, N.

Kuzin, E. A.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Theory of nonlinear loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 919-925 (2001).
[CrossRef]

Leclerc, O.

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

Leuchs, G.

M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
[CrossRef]

Lima, A. O.

Lima, I. T.

Liu, H. F.

M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002).
[CrossRef]

Mamyshev, P. V.

Mamysheva, N. A.

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
[CrossRef]

Matsumoto, M.

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Meissner, M.

M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
[CrossRef]

Meloni, G.

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Méndez Martínez, F.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
[CrossRef]

Menyuk, C. R.

Nirmalathas, A.

M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002).
[CrossRef]

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
[CrossRef]

Ponzini, F.

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Potì, L.

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
[CrossRef]

Pottiez, O.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

Proietti, R.

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Radic, S.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Raybon, G.

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Rösch, R.

M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
[CrossRef]

Ruiz-Corona, U.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

Sakamoto, T.

T. Sakamoto and K. Kikuchi, "Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching," IEEE Photon. Technol. Lett. 16, 545-547 (2004).
[CrossRef]

Scaffardi, M.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
[CrossRef]

Schmauss, B.

A. Striegler and B. Schmauss, ‘‘Extinction ratio improvement by an advanced NOLM setup,’’IEEE Photon. Technol. Lett. 18, 1058-1060 (2006).
[CrossRef]

M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
[CrossRef]

Shahed, M.

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

Striegler, A.

A. Striegler and B. Schmauss, ‘‘Extinction ratio improvement by an advanced NOLM setup,’’IEEE Photon. Technol. Lett. 18, 1058-1060 (2006).
[CrossRef]

Sun, Y.

Suzuki, A.

M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
[CrossRef]

Trillo, S.

E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001).
[CrossRef]

Wood, D.

Yamashita, S.

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

Zweck, J.

Electron. Lett. (1)

A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

A. Striegler and B. Schmauss, ‘‘Extinction ratio improvement by an advanced NOLM setup,’’IEEE Photon. Technol. Lett. 18, 1058-1060 (2006).
[CrossRef]

T. Sakamoto and K. Kikuchi, "Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching," IEEE Photon. Technol. Lett. 16, 545-547 (2004).
[CrossRef]

M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005).
[CrossRef]

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002).
[CrossRef]

S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006).
[CrossRef]

E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of European Conference on Optical Communications (1998), pp. 475-476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Proposed setup. Input and output polarizations angles,Ψ/ and Ψout , as well as the polarizer orientation χ are defined with respect to the QW orientation αc .

Fig. 2.
Fig. 2.

Transmission (a) and output power (b) of the NOLM versus input power for As = 0, 0.28, 0.34, 0.47 (arrow), and Ψ = π/4. The angle and shape of the input ellipse in each case is shown in Fig. 2(b), inset.

Fig. 3.
Fig. 3.

SNR (a) and ER (b) enhancement for various NOLM designs and operational modes. Curves are identified by arrows using labels whose meaning is given in the text. Curves labeled D: solid As = 0.83, dashed As = 0.92, dotted As = 0.98. Black dashed curves correspond to equal output and input SNR (a) or ER (b), thus marking the border between enhancement and degradation.

Fig. 4.
Fig. 4.

(a). Transmissions TN of the NOLM, TP of the P and TNP of the NOLM+P, for χ= -1.0, -1.3 and -1.6 (gray arrows) and Ψ= 0.73π/4 in all cases; (b) output power of the NOLM (orange dashed) and of the NOLM+P (green solid) for Ψ= 0.73π/4, 0.65π/4 and 0.55π/4 (gray arrows), and χ = -1.3. Blue and red dashed lines are NOLM+P output power for χ = -1.0 and -1.6, respectively, and Ψ = 0.73π/4 in both cases. The evolution of output polarization is also represented in Fig. 4(b) for the case Ψ= 0.73π/4 (violet line materializes polarizer direction).

Fig. 5.
Fig. 5.

(a). Transmission and (b) output power characteristics of the NOLM+P (solid lines) for As = 0.16, 0.20, 0.27, 0.34 and χ= 0.20, 0.47, 0.83, 1.1 (arrow). The transmission and output power of the NOLM are also shown for As = 0.27 and χ = 0.83 (green dashed lines), as well as the evolution of the output polarization.

Fig. 6.
Fig. 6.

(a, b). Transmission and (c, d) output power characteristics of the NOLM+P for various values of As , (indicated as curve labels). χ= 0.2 (green), -0.1 (red), -0.5 (blue). Ψ= π/4 in all cases. (b) and (d) are magnifications of Fig. 6(a) and (c), respectively (dashed boxes). The evolution of the output polarization is shown in Fig. 6(d) for the green curve. Values of the power PL of the second zero of transmission are 0.82Pπ (blue), 0.90Pπ (red), and 1.03Pπ (green).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 2 1 2 cos ( πA s P in P π ) cos ( π 1 A s 2 P in P π ) .

Metrics