Abstract

The premier observation on the enhanced light emission from such a metal-SiOx-Si light emitting diode (MOSLED) with Si nano-pyramids at SiOx/Si interface is demonstrated at low biases. The Si nano-pyramids exhibits capability in providing the roughness of the SiOx/Si interface, and improving the Fowler-Nordheim (F-N) tunneling mechanism based carrier injection through the novel SiOx/nano-Si-pyramid/Si structure. HRTEM analysis reveals a precisely controllable size and concentration of the crystallized interfacial Si nano-pyramids at 10nm(height)×10nm(width) and within the range of 108-1011 cm-2, respectively. With these Si nano-pyramids at a surface density of up to 1012/cm2, the F-N tunneling threshold can be reduce from 7 MV/cm to 1.4 MV/cm. The correlation between surface density of the interfacial Si nano-pyramids and the threshold F-N tunneling field has been elucidated. Such a turn-on reduction essentially provides a less damaged SiOx/Si interface as the required bias for the electroluminescence of the MOSLED is greatly decreased, which thus suppresses the generation of structural damage related radiant defects under a lower biased condition and leads to a more stable near-infrared electroluminescence with a narrowing linewidth and an operating lifetime lengthened to >3 hours. An output EL power of nearly 150 nW under a biased voltage of 75 V and current density of 32 mA/cm2 is reported for the first time.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1993).
    [CrossRef]
  2. Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991).
    [CrossRef]
  3. G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
    [CrossRef]
  4. H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
    [CrossRef]
  5. C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993).
    [CrossRef]
  6. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
    [CrossRef] [PubMed]
  7. F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
    [CrossRef]
  8. G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
    [CrossRef]
  9. C.-J. Lin and G.-R. Lin, "Defect-enhanced visible electroluminescence of multi-energv silicon-implanted silicon dioxide film," IEEE J. Quantum Electronics 41, 441-447 (2005).
    [CrossRef]
  10. G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
    [CrossRef]
  11. R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London, Ser. A 119, 173 (1928).
    [CrossRef]
  12. S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
    [CrossRef]
  13. K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
    [CrossRef]
  14. M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).
  15. T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
    [CrossRef]
  16. T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002).
    [CrossRef]
  17. Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
    [CrossRef]
  18. C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006).
    [CrossRef]

2006 (1)

C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006).
[CrossRef]

2005 (4)

C.-J. Lin and G.-R. Lin, "Defect-enhanced visible electroluminescence of multi-energv silicon-implanted silicon dioxide film," IEEE J. Quantum Electronics 41, 441-447 (2005).
[CrossRef]

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
[CrossRef]

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

2002 (2)

T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002).
[CrossRef]

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

2000 (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
[CrossRef]

1997 (1)

H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
[CrossRef]

1995 (1)

G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
[CrossRef]

1993 (3)

C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993).
[CrossRef]

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1993).
[CrossRef]

S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
[CrossRef]

1992 (1)

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

1991 (2)

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991).
[CrossRef]

1928 (1)

R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London, Ser. A 119, 173 (1928).
[CrossRef]

Bao, X. M.

H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
[CrossRef]

Brehme, S.

K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
[CrossRef]

Burnham, M. E.

S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
[CrossRef]

Canham, L. T.

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1993).
[CrossRef]

Chang, C. S.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Chang, S. J.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Chen, S. C.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Chen, Y. F.

C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993).
[CrossRef]

Chou, L.-J.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

Chueh, Y.-L.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Di Stefano, G.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Fallica, P. G.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Fowler, R. H.

R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London, Ser. A 119, 173 (1928).
[CrossRef]

Franzo, G.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
[CrossRef]

Fuhs, W.

K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
[CrossRef]

Gong, S. S.

S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
[CrossRef]

Hsu, Y. P.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Iacona, F.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
[CrossRef]

Imaoka, T.

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

Irrera, A.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Itano, M.

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

Kawanabe, I.

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

Kimura, C.

T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002).
[CrossRef]

Komori, K.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Kume, H.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Kuo, C. H.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Lai, W. C.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Lee, C.-L.

C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006).
[CrossRef]

Lee, S. C.

C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993).
[CrossRef]

Lee, S.-C.

C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006).
[CrossRef]

Lee, W.-I.

C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006).
[CrossRef]

Li, A. P.

G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
[CrossRef]

Li, B. C.

G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
[CrossRef]

Li, N. S.

H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
[CrossRef]

Lin, C. H.

C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993).
[CrossRef]

Lin, C.-J.

C.-J. Lin and G.-R. Lin, "Defect-enhanced visible electroluminescence of multi-energv silicon-implanted silicon dioxide film," IEEE J. Quantum Electronics 41, 441-447 (2005).
[CrossRef]

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

Lin, C.-K.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

Lin, G.-R.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

C.-J. Lin and G.-R. Lin, "Defect-enhanced visible electroluminescence of multi-energv silicon-implanted silicon dioxide film," IEEE J. Quantum Electronics 41, 441-447 (2005).
[CrossRef]

Maydell, K. V.

K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Miritello, M.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Miyashita, M.

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

Moreira, E. C.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Murakoshi, H.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Nickel, N. H.

K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
[CrossRef]

Nicollian, E. H.

Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991).
[CrossRef]

Nishimoto, T.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Nordheim, L. W.

R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London, Ser. A 119, 173 (1928).
[CrossRef]

Ohji, Y.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Ohmi, T.

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Priolo, F.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Qin, G. G.

G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
[CrossRef]

Sanfilippo, D.

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Schroder, D. K.

S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
[CrossRef]

Song, H. Z.

H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
[CrossRef]

Spinella, C.

F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
[CrossRef]

Su, Y. K.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Sugino, T.

T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002).
[CrossRef]

Tachi, S.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Theodore, N. D.

S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
[CrossRef]

Tsai, J. M.

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

Tsu, R.

Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991).
[CrossRef]

Ushiyama, M.

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

Yamamoto, T.

T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002).
[CrossRef]

Ye, Q. Y.

Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991).
[CrossRef]

Zhang, B. R.

G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
[CrossRef]

Zhang, J. Y.

H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
[CrossRef]

Appl. Phys. A (1)

G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1993).
[CrossRef]

C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993).
[CrossRef]

T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002).
[CrossRef]

IEEE Inr. Reliability Phys. Symp. (1)

M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).

IEEE J. Quantum Electronics (1)

C.-J. Lin and G.-R. Lin, "Defect-enhanced visible electroluminescence of multi-energv silicon-implanted silicon dioxide film," IEEE J. Quantum Electronics 41, 441-447 (2005).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005).
[CrossRef]

IEEE Trans. Electron Dev. (2)

T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992).
[CrossRef]

S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993).
[CrossRef]

J. Appl. Phys. (4)

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005).
[CrossRef]

G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995).
[CrossRef]

H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997).
[CrossRef]

F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006).
[CrossRef]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Phys. Rev. B (1)

Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London, Ser. A 119, 173 (1928).
[CrossRef]

Thin Solid Films (1)

K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Cross-sectional HRTEM photographs and corresponding electron diffraction patterns of Si-rich SiOx grown at ICP powers of 45 (upper left) and 35 (lower left) watts. (a) The cross-sectional TEM photograph of the SiOx film PECVD grown at normal ICP power. Inset: the electron diffraction pattern of the PECVD-grown SiOx film. (b) and (c): the lattice parameter and orientation of the Si nanocrystals in PECVD-grown SiOx film. (d) The cross-sectional TEM photograph of Si-rich SiOx film with dense interfacial Si nano-pyramids grown at threshold ICP power. (e) The magnified cross-sectional TEM photograph of the Si-nano-pyramid embedded Si-rich SiOx/Si interface. (f) The magnified TEM photograph for a single Si nano-pyramid and its electron diffraction pattern shown in the inset. (g): The observed orientations for the Si nano-pyramid (upper part) and Si substrate (lower part). (h) and (i): the orientation of the Si nanocrystals in the PECVD-grown Si-rich SiOx film at threshold ICP-power condition.

Fig. 2.
Fig. 2.

The plots of ln(I/E 2) as a function of 1/E for three MOSLED samples with their SiOx films PECVD grown at different ICP powers.

Fig. 3.
Fig. 3.

Threshold F-N tunneling electric field as a function of the area density of Si nano-pyramids.

Fig. 4.
Fig. 4.

The energy band diagrams of a highly biased MOSLEDs using SiOx grown at different PECVD conditions. Left: the SiOx grown at normal ICP power without Si nano-pyramids but with dense interfacial radiant defects. Right: the SiOx grown at threshold ICP power with Si nano-pyramids at the SiOx/Si interface.

Fig. 5.
Fig. 5.

The I-V and I-P curves of the ITO/SiOx/p-Si/Al MOSLEDs with SiOx films grown at different ICP powers. Upper: ICP power of 45 W. Middle: ICP power of 40 W. Lower: ICP power of 30 W.

Fig. 6.
Fig. 6.

TEM images of nc-Si within the annealed SiOx film grown without (left) and with (right) interfacial Si nano-pyramids.

Fig. 7.
Fig. 7.

EL spectra of ITO/SiOx/p-Si/Al MOSLEDs with (solid) or without (dashed) interfacial Si nano-pyramids.

Fig. 8.
Fig. 8.

Far-field EL patterns of three MOSLED samples without (upper) and with Si-nano-pyramid concentrations of ρ=109/cm2 (middle) and ρ=1011/cm2 (lower).

Fig. 9.
Fig. 9.

Output power stability of three MOSLED samples with different Si-nano-pyramid concentrations.

Tables (1)

Tables Icon

Table I. Key parameters of the MOSLEDs with interfacial Si nano-pyramids (Si-nps) of different densities.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I FN = A G AE 2 exp ( B E ) ,
A = q 3 ( m / m ox ) 8 πh Φ B = 1.54 × 10 6 ( m / m ox ) Φ B [ A V 2 ] ,
B = 8 π 2 m ox Φ B 3 3 qh = 6.83 × 10 7 ( m ox / m ) Φ B 3 [ V cm ] ,

Metrics