Abstract

We report the first experimental demonstration of electrically controlled Šolc-type optical wavelength filters and TE-TM mode converters based on Ti-diffused periodically poled lithium niobate (Ti:PPLN) waveguides. A maximum mode conversion efficiency or a peak spectral transmittance of ~99% in the telecom C-L bands was obtained from a 9-mm long, 21.5-21.8-μm multiple-grating Ti:PPLN waveguide device with a switching voltage of as low as 22 V or 0.99 V×d(μm)/L(cm), where d is the electrode separation and L is the electrode length. The spectral range of this device can be tuned by temperature at a rate of ~0.758 nm/°C.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Evans, "Solc birefringent filter, " J. Opt. Soc. Am. 48, 142-145 (1958).
    [CrossRef]
  2. R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
    [CrossRef]
  3. R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE↔TM mode converter with low drive voltage," Opt. Lett. 5, 473-475 (1980).
    [CrossRef] [PubMed]
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  5. Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 Laser using an electro-optic PPLN Crystal as a Laser Q-switch," Opt. Lett. 28, 1460-1462 (2003).
    [CrossRef] [PubMed]
  6. Y. H. Chen, Y. Y. Lin, C. H. Chen, and Y. C. Huang, "Monolithic quasi-phase-matched nonlinear crystal for simultaneous laser Q-switching and parametric oscillation in a Nd:YVO4 laser," Opt. Lett. 30, 1045-1047 (2005).
    [CrossRef] [PubMed]
  7. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5 μm band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  8. T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 Waveguides," J. Lightwave Technol. 11, 285-289 (1993).
    [CrossRef]
  9. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
    [CrossRef]
  10. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
    [CrossRef]
  11. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
    [CrossRef]
  12. B. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett. 30, 570-571 (1977).
    [CrossRef]
  13. D. Zhang, G. Ding, and C. Chen, "Theoretical analysis of guided mode and effective refractive index at 1.53 μm in Ti:LiNbO3 strip waveguides," J. Lightwave Technol. 16, 459-464 (1998).
    [CrossRef]
  14. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  15. R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
    [CrossRef]
  16. D. Marcuse, "Optimal electrode design for integated optics modulators," IEEE J. Quantum Electron. QE-18, 393-398 (1982).
    [CrossRef]

2005 (1)

2003 (1)

2001 (1)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

1998 (2)

1997 (1)

1993 (1)

T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 Waveguides," J. Lightwave Technol. 11, 285-289 (1993).
[CrossRef]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

1982 (1)

D. Marcuse, "Optimal electrode design for integated optics modulators," IEEE J. Quantum Electron. QE-18, 393-398 (1982).
[CrossRef]

1980 (2)

R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
[CrossRef]

R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE↔TM mode converter with low drive voltage," Opt. Lett. 5, 473-475 (1980).
[CrossRef] [PubMed]

1977 (1)

B. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett. 30, 570-571 (1977).
[CrossRef]

1973 (1)

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

1958 (1)

Alferness, R. C.

R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
[CrossRef]

R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE↔TM mode converter with low drive voltage," Opt. Lett. 5, 473-475 (1980).
[CrossRef] [PubMed]

Arbore, M. A.

Buhl, L. L.

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

Chen, B.

B. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett. 30, 570-571 (1977).
[CrossRef]

Chen, C.

Chen, C. H.

Chen, Y. H.

Chou, M. H.

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

Ding, G.

Eknoyan, O.

T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 Waveguides," J. Lightwave Technol. 11, 285-289 (1993).
[CrossRef]

Evans, J. W.

Fejer, M. M.

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

Grundkoetter, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

Hauden, J.

Huang, Y. C.

Jundt, D. H.

Lee, Y. L.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Lin, Y. Y.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Marcuse, D.

D. Marcuse, "Optimal electrode design for integated optics modulators," IEEE J. Quantum Electron. QE-18, 393-398 (1982).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Pastor, A. C.

B. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett. 30, 570-571 (1977).
[CrossRef]

Quiring, V.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Ricken, R.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

Schreiber, G.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Sohler, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Suche, H.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Suzuki, T.

T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 Waveguides," J. Lightwave Technol. 11, 285-289 (1993).
[CrossRef]

Taylor, H. F.

T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 Waveguides," J. Lightwave Technol. 11, 285-289 (1993).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Yariv, A.

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

Zhang, D.

Appl. Phys. B (2)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkoetter, V. Quiring, R. Ricken, W. Sohler, "Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping," Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

R. Regener and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Appl. Phys. Lett. (3)

B. Chen and A. C. Pastor, "Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3," Appl. Phys. Lett. 30, 570-571 (1977).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Marcuse, "Optimal electrode design for integated optics modulators," IEEE J. Quantum Electron. QE-18, 393-398 (1982).
[CrossRef]

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973).
[CrossRef]

J. Lightwave Technol. (3)

D. Zhang, G. Ding, and C. Chen, "Theoretical analysis of guided mode and effective refractive index at 1.53 μm in Ti:LiNbO3 strip waveguides," J. Lightwave Technol. 16, 459-464 (1998).
[CrossRef]

T. Suzuki, O. Eknoyan, and H. F. Taylor, "Electrooptic coefficient measurements in LiTaO3 and LiNbO3 Waveguides," J. Lightwave Technol. 11, 285-289 (1993).
[CrossRef]

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Technol. LT-5, 700-708 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscopic image of the -z surface of the EO Ti:PPLN waveguide device, showing the arrangement of the electrodes relative to the waveguides and the PPLN gratings. The HF etched +z surface is also visible in the image, indicating a duty cycle of the PPLN domains of between 40–50%.

Fig. 2.
Fig. 2.

Far-field intensity profiles of the (a) TE and (b) TM waveguide modes measured at the output of the Ti:PPLN waveguide. The intensity profiles indicate single-transverse-mode guiding of the waveguide for both TE and TM polarizations.

Fig. 3.
Fig. 3.

Mode conversion efficiency versus the EO tuning voltage for the 21.5-μm-period Ti:PPLN waveguide measured at the phase-matching wavelength 1.561 μm at 39.5°C. Nearly 100% conversion efficiency is obtained.

Fig. 4.
Fig. 4.

Transmission spectra of the 21.5–21.8-μm-period EO Ti:PPLN-waveguide wavelength filters at 39.5°C under an applied voltage of 22 V. The transmission bandwidth is ~2.6 nm for each spectral curve.

Fig. 5.
Fig. 5.

Temperature-tuned transmission spectra for the 21.5-μm-period EO Ti:PPLN waveguide filter. A tuning rate of ~0.758 nm/°C was obtained.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Λ = m 2 π β o β e , m = 1, 3, 5…,
Δ ε ( x , y , z ) = ε o r 51 ( y , z ) E y ( y , z ) n o 2 ( y , z ) n e 2 ( y , z ) [ 0 0 0 0 0 1 0 1 0 ] g ( x ) = m 0 Δ ε m ( y , z ) e i K m x ,
η o ( L ) = κ 2 L 2 sin c 2 ( κ 2 + ( Δ β 2 ) 2 L ) ,
κ = 2 λ 0 n o , eff 2 n e , eff 2 r 51 E y n o , eff n e , eff sin ( mπD ) m ϑ ,
ϑ = e o * ( y , z ) e y ( y , z ) e e ( y , z ) dydz ,
η o ( L ) = sin 2 ( κ L ) .
V EO = 1 ϑ λ 0 4 π sin ( πD ) n o , eff n e , eff r 51 n o , eff 2 n e , eff 2 d L
η c = P TE TM P TE + P TM ,

Metrics