Abstract

The model of ultrafast nonlinear interferometer gate accounting for the polarization dependent gain and dynamic birefringence has been developed. It is shown that these effects can lead to appearance of the satellite pulses and limit the achievable extinction ratio. The effect of dynamic birefringence can be completely eliminated by proper adjustment of SOA axes but it can strongly impair the performance of the gate when the axes are misaligned. The switching window should not be set to half of a bit-period to avoid interference of the satellites of neighbor pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
    [CrossRef]
  2. S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
    [CrossRef]
  3. N. S. Patel, K. A. Rauschenbach, and K. L. Hall, "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).
    [CrossRef]
  4. X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
    [CrossRef]
  5. H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J.S. Dorren, "SOA-based alloptical switch with subpicosecond full recovery," Opt. Express 13, 942-947 (2005).
    [CrossRef] [PubMed]
  6. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
    [CrossRef]
  7. X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. Khoe, and H. Dorren, "Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity," Opt. Express 12, 2448-2453 (2004).
    [CrossRef] [PubMed]
  8. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
    [CrossRef]
  9. J. Vegas Olmos, I. Monroy, Y. Liu, M. Garcia Larrode, J. Turkiewicz, H. Dorren, and A. Koonen, "Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier," Opt. Express 12, 4214-4219 (2004).
    [CrossRef]
  10. M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
    [CrossRef]
  11. C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
    [CrossRef]
  12. J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
    [CrossRef]
  13. N. S. Patel, K. L. Hall, and K. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing," Appl. Opt. 37, 2831-2842, (1998).
    [CrossRef]

2005

2004

2003

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

2002

M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
[CrossRef]

2001

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

2000

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

1998

1996

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).
[CrossRef]

1993

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

Baets, R.G.

M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
[CrossRef]

Berger, J.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

Calabretta, N.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

De Merlier, J.

M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
[CrossRef]

de Waardt, H.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J.S. Dorren, "SOA-based alloptical switch with subpicosecond full recovery," Opt. Express 13, 942-947 (2005).
[CrossRef] [PubMed]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Diez, S.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Dorren, H.

Dorren, H. J. S.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

Dorren, H. J.S.

Ehrke, H.-J.

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Feiste, U.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Glesk, I.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

Hall, K. L.

N. S. Patel, K. L. Hall, and K. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing," Appl. Opt. 37, 2831-2842, (1998).
[CrossRef]

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).
[CrossRef]

Hill, M. T.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

Ju, H.

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

Khoe, G.

Khoe, G. D.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J.S. Dorren, "SOA-based alloptical switch with subpicosecond full recovery," Opt. Express 13, 942-947 (2005).
[CrossRef] [PubMed]

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
[CrossRef]

Khoe, G.-D.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

Krajinovic, V.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

Lehmann, G.

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Lenstra, D.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J.S. Dorren, "SOA-based alloptical switch with subpicosecond full recovery," Opt. Express 13, 942-947 (2005).
[CrossRef] [PubMed]

X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. Khoe, and H. Dorren, "Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity," Opt. Express 12, 2448-2453 (2004).
[CrossRef] [PubMed]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
[CrossRef]

Li, Z.

Liu, Y.

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

Ludwig, R.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Morthier, G.

M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
[CrossRef]

Patel, N. S.

N. S. Patel, K. L. Hall, and K. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing," Appl. Opt. 37, 2831-2842, (1998).
[CrossRef]

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).
[CrossRef]

Petermann, K.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

Prucnal, P. R.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

Rauschenbach, K.

Rauschenbach, K. A.

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).
[CrossRef]

Rohde, H.

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Schairer, W.

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Schmidt, C.

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Schubert, C.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

Tangdiongga, E.

H. Ju, S. Zhang, D. Lenstra, H. de Waardt, E. Tangdiongga, G. D. Khoe, and H. J.S. Dorren, "SOA-based alloptical switch with subpicosecond full recovery," Opt. Express 13, 942-947 (2005).
[CrossRef] [PubMed]

X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. Khoe, and H. Dorren, "Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity," Opt. Express 12, 2448-2453 (2004).
[CrossRef] [PubMed]

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

Toptchiyski, G.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

Turkiewicz, J. P.

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

Weber, H. G.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

Yang, X.

X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. Khoe, and H. Dorren, "Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity," Opt. Express 12, 2448-2453 (2004).
[CrossRef] [PubMed]

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
[CrossRef]

Zhang, S.

Zhao, M.

M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
[CrossRef]

Appl. Opt.

Electron. Lett.

S. Diez, C. Schubert, R. Ludwig, H.-J. Ehrke, U. Feiste, C. Schmidt, and H. G. Weber, "160 Gbit/s all-optical demultiplexer using hybrid gain-transparent SOA Mach-Zehnder interferometer," Electron. Lett. 36, 1484-1486 (2000).
[CrossRef]

J. P. Turkiewicz, E. Tangdiongga, H. Rohde, W. Schairer, G. Lehmann, G. D. Khoe and H. de Waardt, "Simultaneous high speed OTDM add-drop multiplexing using GT-UNI switch," Electron. Lett. 39, 20030535 (2003).
[CrossRef]

IEEE J. Quantum Electron.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, "Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories," IEEE J. Quantum Electron. 39, 141-148 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Zhao, J. De Merlier, G. Morthier, R.G. Baets, "Dynamic Birefringence of the Linear Optical Amplifier and Application in Optical Regeneration," IEEE J. Sel. Top. Quantum Electron. 8, 1399-1404, (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Schubert, S. Diez, J. Berger, R. Ludwig, U. Feiste, H. G. Weber, G. Toptchiyski, K. Petermann, and V. Krajinovic, "160 Gb/s All-Optical Demultiplexing using a Gain-Transparent Ultrafast-Nonlinear Interferometer (GTUNI)," IEEE Photon. Technol. Lett. 13, 475-477, 2001.
[CrossRef]

N. S. Patel, K. A. Rauschenbach, and K. L. Hall, "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-790 (1993).
[CrossRef]

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
[CrossRef]

Opt. Commun.

X. Yang, D. Lenstra, G. D. Khoe, H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2003).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Scheme of UNI gate.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

B = [ e 2 0 0 Δ ̂ e 2 Δ ] ,
B = P x B + D P y B ,
P x = [ 1 0 0 0 ] , P y = [ 0 0 0 1 ] ,
D = [ Δ ̂ 0 0 Δ ̂ ] = Δ ̂ E ,
B = [ e 2 0 0 e 2 Δ ] .
M ( t ) = T ( t ) exp [ ( t ) ] R M M ( t ) R + M = T ( t ) exp [ ( t ) ] R M T ( t ) F ( t ) R + M
T ( t ) = [ 1 + ε ( t ) 0 0 1 ε ( t ) ] .
F ( t ) = [ e iδψ ( t ) 2 0 0 e iδψ ( t ) 2 ]
R ± M = [ cos ( φ ) ± sin ( φ ) sin ( φ ) cos ( φ ) ] ,
= [ c 1 c 2 c ̅ 2 c ¯ 1 ] , c 1 2 + c 2 2 = 1 .
J ( t ) = P y R + B R 2 M ( t ) 1 R B R + P x J 0 ( t ) .
J ( t ) = P y R + P x B R 2 M ( t ) 1 R P x B R + P x J 0 ( t )
+ P y R + P x B R 2 M ( t ) 1 R D P x B R + P x J 0 ( t )
+ P y R + DP y B R 2 M ( t ) 1 R P x B R + P x J 0 ( t )
+ P y R + DP y B R 2 M ( t ) 1 R DP y B R + P x J 0 ( t ) .
J ( t ) = P y R + P x B R 2 M ( t ) 1 R P x B R + P x J 0 ( t )
+ P y R + P x B R 2 M ( t ) 1 R P y B R + P x J 0 ( t Δ )
+ P y R + P y B R 2 M ( t Δ ) 1 R P x B R + P x J 0 ( t Δ )
+ P y R + P y B R 2 M ( t Δ ) 1 R P y B R + P x J 0 ( t 2 Δ ) .
M 0 = T 0 exp [ i ψ 0 ] T 0 F 0 ,
S 2 = [ 0 1 1 0 ] , S 3 = [ 1 0 0 1 ] ,
B R R B = exp ( Δ ) S 2 , R + S 2 R + = E , P x S 2 P y + P y S 2 P x = S 2 .
J ( t ) = exp ( Δ ) P y R + { P x S 2 P y T ( t ) exp [ ( t ) ] M ( t )
+ P y S 2 P x T ( t Δ ) exp [ ( t Δ ) ] M ( t Δ ) } F 0 1 R + P x J 0 ( t Δ ) ,
J y ( t ) 2 = 1 2 [ T y ( t ) 2 + T x ( t Δ ) 2 2 T y ( t ) T x ( t Δ ) cos ( Δ ψ ( t ) ) ] J 0 x ( t Δ ) 2 ,
2 = M 0 1 R + M .
2 = F 0 1 R + M .
R F 0 1 M ( t ) R = a ( t ) S 2 + b ( t ) S 3 ,
J y ( t ) = 1 2 { b ( t ) T ( t ) exp [ ( t ) ] exp ( ) J 0 x ( t )
+ [ a ( t ) T ( t ) exp [ ( t ) ] a ( t Δ ) T ( t Δ ) exp [ ( t Δ ) ] ] J 0 x ( t Δ )
b ( t Δ ) T ( t Δ ) exp [ ( t Δ ) ] exp [ i ( ϕ + 2 Δ ω ) ] J 0 x ( t 2 Δ ) } .
J y ( t ) 2 1 4 { [ sin 2 ζ ( t ) + ε 0 2 cos 2 ζ ( t ) ] J 0 x ( t ) 2
+ [ sin 2 ζ ( t Δ ) + ε 0 2 cos 2 ζ ( t Δ ) ] J 0 x ( t 2 Δ ) 2
+ { cos 2 ζ ( t ) + cos 2 ζ ( t Δ ) + ε 0 2 [ sin 2 ζ ( t ) + sin 2 ζ ( t Δ ) ]
2 [ cos ζ ( t ) cos ζ ( t Δ ) + ε 0 2 sin ζ ( t ) sin ζ ( t Δ ) ] cos Δ ψ ( t )
+ 2 ε 0 sin [ ζ ( t ) ζ ( t Δ ) ] sin Δ ψ ( t ) } J 0 x ( t Δ ) 2 } .

Metrics