Abstract

We demonstrate the removal of 2π radians of self-phase modulation (SPM) in a fiber-based chirped pulse amplification (CPA) system. Compensation of SPM distortion is achieved in the time domain by using a LiNbO3 electro-optic phase modulator to emulate a negative nonlinear index of refraction. By synthesizing the drive waveform to the phase modulators with two RF frequencies that are phase-locked to the repetition rate of the seed laser, we achieve large phase compensations using cost-effective narrow band electronics. Our technique is simple, robust and can be readily integrated into existing fiber CPA systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel Top. Quantum Electron. 7, 504-517 (2001).
    [CrossRef]
  2. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett. 19, 2149-2151 (1994)
    [CrossRef] [PubMed]
  3. O. A. Konoplev and D. D. Meyerhofer, "Cancellation of B-Integral accumulation for CPA lasers," IEEE J. Sel Top. Quantum Electron. 4, 459-469 (1998).
    [CrossRef]
  4. A. Braun, S. Kane, and T. Norris, "Compensation of self-phase modulation in chirped-pulse amplification laser system," Opt. Lett. 22, 615-617 (1997).
    [CrossRef] [PubMed]
  5. A. Effimov, M. D. Moores, B. Mei,  et al., "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning, " Appl. Phys. B 70, S133-S141 (2000).
    [CrossRef]
  6. L. Shah, Z. Liu, I. Hartl,  et al., "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  7. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005).
    [CrossRef] [PubMed]
  8. J. van Howe, G. Zhu and C. Xu, "Compensation of self-phase modulation in fiber based chirped-pulse amplification systems," Opt. Lett. 31, 1756-1758 (2006).
    [CrossRef] [PubMed]
  9. C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
    [CrossRef]

2006

2005

2002

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

2001

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

2000

A. Effimov, M. D. Moores, B. Mei,  et al., "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning, " Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

1998

O. A. Konoplev and D. D. Meyerhofer, "Cancellation of B-Integral accumulation for CPA lasers," IEEE J. Sel Top. Quantum Electron. 4, 459-469 (1998).
[CrossRef]

1997

1994

Braun, A.

Chong, A.

Ditmire, T.

Effimov, A.

A. Effimov, M. D. Moores, B. Mei,  et al., "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning, " Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

Hartl, I.

Kane, S.

Konoplev, O. A.

O. A. Konoplev and D. D. Meyerhofer, "Cancellation of B-Integral accumulation for CPA lasers," IEEE J. Sel Top. Quantum Electron. 4, 459-469 (1998).
[CrossRef]

Kuznetsova, L.

Liu, X.

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

Liu, Z.

Mei, B.

A. Effimov, M. D. Moores, B. Mei,  et al., "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning, " Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

Meyerhofer, D. D.

O. A. Konoplev and D. D. Meyerhofer, "Cancellation of B-Integral accumulation for CPA lasers," IEEE J. Sel Top. Quantum Electron. 4, 459-469 (1998).
[CrossRef]

Mollenauer, L.

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

Moores, M. D.

A. Effimov, M. D. Moores, B. Mei,  et al., "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning, " Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

Norris, T.

Perry, M. D.

Shah, L.

Stuart, B. C.

van Howe, J.

Wise, F.

Xu, C.

J. van Howe, G. Zhu and C. Xu, "Compensation of self-phase modulation in fiber based chirped-pulse amplification systems," Opt. Lett. 31, 1756-1758 (2006).
[CrossRef] [PubMed]

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

Zhou, S.

Zhu, G.

Appl. Phys. B

A. Effimov, M. D. Moores, B. Mei,  et al., "Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning, " Appl. Phys. B 70, S133-S141 (2000).
[CrossRef]

Electron. Lett.

C. Xu, L. Mollenauer, and X. Liu, "Compensation of nonlinear self-phase modulation with phase modulators," Electron. Lett. 38, 1578-1579 (2002).
[CrossRef]

IEEE J. Sel Top. Quantum Electron.

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel Top. Quantum Electron. 7, 504-517 (2001).
[CrossRef]

O. A. Konoplev and D. D. Meyerhofer, "Cancellation of B-Integral accumulation for CPA lasers," IEEE J. Sel Top. Quantum Electron. 4, 459-469 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. C: circulator, G: grating, L: lens, M: mirror, D: RF delayline, A: variable-gain RF amplifier, PD: photo-detector, BP: band-pass filter at 10 GHz, FD: frequency doubler, DCF: dispersion compensating fiber, PM: phase modulator. The inset in the lower left corner shows the measured optical pulse after stretching and the synthesized electrical signal.

Fig. 2.
Fig. 2.

Second order interferometric autocorrelation traces at high power (pulse energy: 13 nJ) (a) without SPM compensation, (b) with 1.0 π rad compensation, (c) with 2.0 π rad compensation, and (d) at low power (pulse energy: 0.4 nJ) with negligible nonlinearity. The deconvolved pulse widths (FWHM) are indicated in the plots. The deconvolution factor for a Gaussian pulse was used because the measured optical spectrum before the high power amplifier was approximately Gaussian.

Fig. 3.
Fig. 3.

Optical spectrum of CW light modulated by (a) experimentally, and (b) numerically synthesized RF signal with 2.0 π amplitude.

Fig. 4.
Fig. 4.

(a) Measured and (b) simulated autocorrelation trace for a nonlinear phase shift of 2.0 π rad and an optimally mismatched grating compressor. The deconvolved pulse widths (FWHM) are indicated in the plots.

Fig. 5.
Fig. 5.

Simulated pulse intensity profile with 2.0 π of SPM compensated by (a) waveform synthesized signal, and (b) single-tone 10 GHz signal. The pulse widths (FWHM) are indicated in the plots.

Metrics