Abstract

A core component of all scanning near-field optical microscopy (SNOM) systems is the optical probe, which has evolved greatly but still represents the limiting component for the system. Here, we introduce a new type of optical probe, based on a Fractal Fibre which is a special class of photonic crystal fibre (PCF), to directly address the issue of increasing the optical throughput in SNOM probes. Optical measurements through the Fractal Fibre probes have shown superior power levels to that of conventional SNOM probes. The results presented in this paper suggest that a novel fibre design is critical in order to maximize the potential of the SNOM.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Synge, “A suggested method for extending the microscopic resolution into the ultramicroscopic region,” Phil. Mag. 6, 356 (1928).
  2. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  3. U. Ch. Fischer, U. T. Drig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988)
    [CrossRef]
  4. E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
    [CrossRef]
  5. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  6. R. C. Davis, C. C. Williams, and P. Neuzil, “Micromachined submicrometer photodiode for scanning probe microscopy,” Appl. Phys. Lett.,  66, 2309–2311 (1995).
    [CrossRef]
  7. T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
    [CrossRef]
  8. P. Hoffmann, B. Dutoit, and R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy,  61, 165–170 (1995).
    [CrossRef]
  9. S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fibre probe for near-field optics by selective chemical etching,” J. Lightwave Technol.,  14, 2231–2235, (1996).
    [CrossRef]
  10. M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
    [CrossRef]
  11. http://www.nanonics.co.il/.
  12. S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
    [CrossRef]
  13. S. T. Huntington, J. Katsifolis, B. C. Gibson, J. Canning, K. Lyytikainen, J. Zagari, L. W. Cahill, and J. D. Love, “Retaining and characterising nano-structure within tapered air-silica structured optical fibers,” Opt. Express,  11, 98–104 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-98.
    [CrossRef] [PubMed]
  14. E. C. Magi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express,  12, 776–784 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-776.
    [CrossRef] [PubMed]
  15. Y. Youk, D. Y. Kim, and K. W. Park, “Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber,” Fiber Integrated Opt.,  23, 439–446 (2004).
    [CrossRef]
  16. Y. K. Lizé, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstruc-tured optical fiber photonic wires with subwavelength core diameter,” Opt. Express,  12, 3209–3217 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-14-3209.
    [CrossRef] [PubMed]
  17. C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett.,  82, 1338–1340 (2003).
    [CrossRef]
  18. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Su-percontinuum generation in submicron fibre waveguides,” Opt. Express,  12, 2864–2869 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
    [CrossRef] [PubMed]
  19. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett.,  27, 812–814 (2002).
    [CrossRef]
  20. T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” in Fiber-based Component Fabrication, Testing, and Connectorization, Proc. SPIE,  4943, 142–151 (2002).
    [CrossRef]
  21. B. MandelbrotFractals: Form, Chance and Dimension (W. H. Freeman and Co., San Francisco, 1977).
  22. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef] [PubMed]
  23. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fibre near-field probes,” Appl. Opt. 34, 1215–28, (1995).
    [CrossRef] [PubMed]
  24. R. L. Williamson and M. J. Miles, “Melt-drawn scanning near-field optical microscopy probe profiles,” J. Appl. Phys. 80, 4804–4812, (1996).
    [CrossRef]
  25. B. Gibson, S. Huntington, S. Rubanov, P. Olivero, K. Digweed-Lyytikäinen, J. Canning, and J. Love, “Exposure and characterization of nano-structured hole arrays in tapered photonic crystal fibres using a combined FIB/SEM technique,” Opt. Express 13, 9023–9028 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-9023.
    [CrossRef] [PubMed]
  26. J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
    [CrossRef]

2006 (1)

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
[CrossRef]

2005 (1)

2004 (4)

2003 (2)

2002 (2)

B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett.,  27, 812–814 (2002).
[CrossRef]

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” in Fiber-based Component Fabrication, Testing, and Connectorization, Proc. SPIE,  4943, 142–151 (2002).
[CrossRef]

2000 (1)

S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
[CrossRef]

1999 (1)

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

1997 (1)

1996 (2)

R. L. Williamson and M. J. Miles, “Melt-drawn scanning near-field optical microscopy probe profiles,” J. Appl. Phys. 80, 4804–4812, (1996).
[CrossRef]

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fibre probe for near-field optics by selective chemical etching,” J. Lightwave Technol.,  14, 2231–2235, (1996).
[CrossRef]

1995 (3)

G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fibre near-field probes,” Appl. Opt. 34, 1215–28, (1995).
[CrossRef] [PubMed]

P. Hoffmann, B. Dutoit, and R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy,  61, 165–170 (1995).
[CrossRef]

R. C. Davis, C. C. Williams, and P. Neuzil, “Micromachined submicrometer photodiode for scanning probe microscopy,” Appl. Phys. Lett.,  66, 2309–2311 (1995).
[CrossRef]

1991 (2)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

1988 (1)

U. Ch. Fischer, U. T. Drig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988)
[CrossRef]

1987 (1)

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

1928 (1)

E. H. Synge, “A suggested method for extending the microscopic resolution into the ultramicroscopic region,” Phil. Mag. 6, 356 (1928).

Ashby, S. J.

S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

Birks, T. A.

Black, R.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

Bolger, J. A.

Cahill, L. W.

Canning, J.

Chaigneau, M.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
[CrossRef]

Chiba, N.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Davis, R. C.

R. C. Davis, C. C. Williams, and P. Neuzil, “Micromachined submicrometer photodiode for scanning probe microscopy,” Appl. Phys. Lett.,  66, 2309–2311 (1995).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Digweed-Lyytikäinen, K.

Drig, U. T.

U. Ch. Fischer, U. T. Drig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988)
[CrossRef]

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy,  61, 165–170 (1995).
[CrossRef]

Eggleton, B. J.

Elias, M. C.

S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
[CrossRef]

Eom, J. B.

Fischer, U. Ch.

U. Ch. Fischer, U. T. Drig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988)
[CrossRef]

Gibson, B.

Gibson, B. C.

Gonthier, F.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

Henry, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy,  61, 165–170 (1995).
[CrossRef]

Holton, M.

Huntington, S.

Huntington, S. T.

S. T. Huntington, J. Katsifolis, B. C. Gibson, J. Canning, K. Lyytikainen, J. Zagari, L. W. Cahill, and J. D. Love, “Retaining and characterising nano-structure within tapered air-silica structured optical fibers,” Opt. Express,  11, 98–104 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-98.
[CrossRef] [PubMed]

S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
[CrossRef]

Ichihara, S.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Isaacson, M.

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

Kakarantzas, G.

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” in Fiber-based Component Fabrication, Testing, and Connectorization, Proc. SPIE,  4943, 142–151 (2002).
[CrossRef]

Kato, K.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Katsifolis, J.

Kerbage, C.

C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett.,  82, 1338–1340 (2003).
[CrossRef]

Kim, D. Y.

Y. Youk, D. Y. Kim, and K. W. Park, “Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber,” Fiber Integrated Opt.,  23, 439–446 (2004).
[CrossRef]

Kim, J.

Knight, J. C.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lacroix, S.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Lee, B. H.

Leon-Saval, S. G.

Lewis, A.

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

Lizé, Y. K.

Louarn, G.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
[CrossRef]

Love, J.

Love, J. D.

S. T. Huntington, J. Katsifolis, B. C. Gibson, J. Canning, K. Lyytikainen, J. Zagari, L. W. Cahill, and J. D. Love, “Retaining and characterising nano-structure within tapered air-silica structured optical fibers,” Opt. Express,  11, 98–104 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-2-98.
[CrossRef] [PubMed]

S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
[CrossRef]

Lyytikainen, K.

Magi, E. C.

Mandelbrot, B.

B. MandelbrotFractals: Form, Chance and Dimension (W. H. Freeman and Co., San Francisco, 1977).

Mason, M. W.

Miles, M. J.

R. L. Williamson and M. J. Miles, “Melt-drawn scanning near-field optical microscopy probe profiles,” J. Appl. Phys. 80, 4804–4812, (1996).
[CrossRef]

Minea, T.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
[CrossRef]

Mitsuoka, Y.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Mononobe, S.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fibre probe for near-field optics by selective chemical etching,” J. Lightwave Technol.,  14, 2231–2235, (1996).
[CrossRef]

Moon, D. S.

Morrison, G. H.

Muramatsu, H.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Murphy, D. F.

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” in Fiber-based Component Fabrication, Testing, and Connectorization, Proc. SPIE,  4943, 142–151 (2002).
[CrossRef]

Nakajima, K.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Neuzil, P.

R. C. Davis, C. C. Williams, and P. Neuzil, “Micromachined submicrometer photodiode for scanning probe microscopy,” Appl. Phys. Lett.,  66, 2309–2311 (1995).
[CrossRef]

Niwa, T.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Ohtsu, M.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fibre probe for near-field optics by selective chemical etching,” J. Lightwave Technol.,  14, 2231–2235, (1996).
[CrossRef]

Olivero, P.

Ollivier, G.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
[CrossRef]

Paek, U. C.

Park, K. W.

Y. Youk, D. Y. Kim, and K. W. Park, “Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber,” Fiber Integrated Opt.,  23, 439–446 (2004).
[CrossRef]

Pohl, D. W.

U. Ch. Fischer, U. T. Drig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988)
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Rubanov, S.

Russell, P. S. J.

Russell, P. St. J.

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Su-percontinuum generation in submicron fibre waveguides,” Opt. Express,  12, 2864–2869 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
[CrossRef] [PubMed]

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” in Fiber-based Component Fabrication, Testing, and Connectorization, Proc. SPIE,  4943, 142–151 (2002).
[CrossRef]

Sakuhara, T.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Salathe, R.

P. Hoffmann, B. Dutoit, and R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy,  61, 165–170 (1995).
[CrossRef]

Shin-Ogi, M.

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Steinvurzel, P.

Stewart, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

Synge, E. H.

E. H. Synge, “A suggested method for extending the microscopic resolution into the ultramicroscopic region,” Phil. Mag. 6, 356 (1928).

Ta’eed, V. G.

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

Valaskovic, G. A.

Wadsworth, W. J.

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

Williams, C. C.

R. C. Davis, C. C. Williams, and P. Neuzil, “Micromachined submicrometer photodiode for scanning probe microscopy,” Appl. Phys. Lett.,  66, 2309–2311 (1995).
[CrossRef]

Williamson, R. L.

R. L. Williamson and M. J. Miles, “Melt-drawn scanning near-field optical microscopy probe profiles,” J. Appl. Phys. 80, 4804–4812, (1996).
[CrossRef]

Yang, G. H.

Youk, Y.

Y. Youk, D. Y. Kim, and K. W. Park, “Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber,” Fiber Integrated Opt.,  23, 439–446 (2004).
[CrossRef]

Zagari, J.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

U. Ch. Fischer, U. T. Drig, and D. W. Pohl, “Near-field optical scanning microscopy in reflection,” Appl. Phys. Lett. 52, 249–251 (1988)
[CrossRef]

E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987).
[CrossRef]

R. C. Davis, C. C. Williams, and P. Neuzil, “Micromachined submicrometer photodiode for scanning probe microscopy,” Appl. Phys. Lett.,  66, 2309–2311 (1995).
[CrossRef]

C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett.,  82, 1338–1340 (2003).
[CrossRef]

Electron. Lett. (1)

S. T. Huntington, S. J. Ashby, M. C. Elias, and J. D. Love, “Direct measurement of core profile diffusion and ellipticity in fused-taper fibre couplers using atomic force microscopy,” Electron. Lett.,  36, 121–123 (2000).
[CrossRef]

Fiber Integrated Opt. (1)

Y. Youk, D. Y. Kim, and K. W. Park, “Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber,” Fiber Integrated Opt.,  23, 439–446 (2004).
[CrossRef]

IEE Proc. J. Optoelectron. (1)

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, and F. Gonthier, “Tapered singlemode fibres and devices Part1: Adiabaticity criteria,” IEE Proc. J. Optoelectron.,  138, 343–354, (1991).
[CrossRef]

J. Appl. Phys. (1)

R. L. Williamson and M. J. Miles, “Melt-drawn scanning near-field optical microscopy probe profiles,” J. Appl. Phys. 80, 4804–4812, (1996).
[CrossRef]

J. Lightwave Technol. (1)

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fibre probe for near-field optics by selective chemical etching,” J. Lightwave Technol.,  14, 2231–2235, (1996).
[CrossRef]

J. of Micros. (1)

T. Niwa, Y. Mitsuoka, K. Kato, S. Ichihara, N. Chiba, M. Shin-Ogi, K. Nakajima, H. Muramatsu, and T. Sakuhara, “Optical microcantilever consisting of channel waveguide for scanning near-field optical microscopy controlled by atomic force,” J. of Micros.,  194388–392 (1999).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phil. Mag. (1)

E. H. Synge, “A suggested method for extending the microscopic resolution into the ultramicroscopic region,” Phil. Mag. 6, 356 (1928).

Proc. SPIE (1)

T. A. Birks, G. Kakarantzas, P. St. J. Russell, and D. F. Murphy, “Photonic crystal fiber devices,” in Fiber-based Component Fabrication, Testing, and Connectorization, Proc. SPIE,  4943, 142–151 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77, 103702 (2006).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a nanometric scale,” Science,  251, 1468–1470 (1991).
[CrossRef] [PubMed]

Ultramicroscopy (1)

P. Hoffmann, B. Dutoit, and R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy,  61, 165–170 (1995).
[CrossRef]

Other (2)

http://www.nanonics.co.il/.

B. MandelbrotFractals: Form, Chance and Dimension (W. H. Freeman and Co., San Francisco, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Evolution of the refractive index profile in a standard tapered fibre which shows the dopant diffusion, (b) mode evolution along a standard metal coated taper which shows a strong interaction between the field and the coating at the tip and (c) metal coated tapered Fractal fibre which depicts minimal interaction between the modal field and the metal coating.

Fig. 2.
Fig. 2.

(a). Schematic representation of the Fractal fibre cross-section which clearly shows the π/n rotation of each consecutive ring of holes from the core along with the doubling of the radius of the holes in each consecutive ring, and (b) depicts when the Fractal fibre is tapered to form a near-field probe, the each inner ring of holes collapses into the core region and the modal field is then confined by successive rings of holes with minimal variation to the modal properties.

Fig. 3.
Fig. 3.

(a). Stacked capillary tubes (outer diameter ∼ 25mm). Gentle collapsing of the outer layer reveals an octagonal profile determined by the use of eight capillaries. Interstitial gap fillers are also used to reduce the size of interstitial (unwanted) holes and minimize the fine adjustment in pressure control as much as possible, (b) Fractal preform after fusing and (c) the resulting fibre cane.

Fig. 4.
Fig. 4.

CCD images of the cross-sections of a piece of (a) single-mode fibre, (b) PCF and (c) Fractal fibre. The diameter of each fibre type is 125 microns.

Fig. 5.
Fig. 5.

CCD images of 488nm light transmission through (a) single-mode fibre probe, (b) photonic crystal fibre probe and (c) Fractal fibre probe. In each case, the tapered probes were immersed in a fluorescent solution which has an index of refraction greater than that of the silica fibre cladding.

Metrics