Abstract

By examining beam patterns, temporal pulse forms, and radio-frequency spectra as functions of resonator configuration and pump power, we found that a passively mode-locked Nd:GdVO4 laser exhibited four main regimes of operation that were single-transverse-mode Q-switched mode locking (QSML), single-transverse-mode continuous-wave mode locking (CWML), multiple-transverse-modes QSML, and multiple-transverse-modes CWML. The effect of multiple transverse modes on CWML was giving rise to amplitude instability in the pulse train. In the regime of multiple-transverse-modes QSML, we observed the phenomenon of spatiotemporal dynamics that spatial patterns vary with the time.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers : an antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992).
    [CrossRef] [PubMed]
  2. K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, "Passively mode-locked diode-pumped solid-state laser using an antiresonant Fabry-Perot saturable absorber," Opt. Lett. 18, 640-642 (1993).
    [CrossRef] [PubMed]
  3. R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, and M. Moser, "Diode-pumped passively mode-locked 1.3μm Nd: YVO4 and Nd:YLF lasers using semiconductor saturable absorbers," Opt. Lett. 21, 1378-1380 (1996).
    [CrossRef] [PubMed]
  4. U. Keller, T. H. Chiu, and J. F. Ferguson, "Self-starting femtosecond mode-locked Nd:Glass laser using intracavity saturable absorbers," Opt. Lett. 18, 1077-1079 (1993).
    [CrossRef] [PubMed]
  5. B. Zhang, G. Li, M. Chen, Z. Zhang, and Y. Wang, "Passive mode locking of a diode-end-pumped Nd:GdVO4 laser with a semiconductor saturable absorber mirror," Opt. Lett. 28, 1829-1831 (2003).
    [CrossRef] [PubMed]
  6. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999)
    [CrossRef]
  7. H.-H. Wu, "Formation of off-axis beams in an axially pumped solid-state laser," Opt. Express 12, 3459-3464 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-15-3459.
    [CrossRef] [PubMed]
  8. H.-H. Wu, "Interpulse period doubling in a self-mode-locked Ti:sapphire laser," J. Opt. Soc. Am. B 18, 1597-11600 (2001)
    [CrossRef]
  9. D. H. Auston, "Transverse mode locking," IEEE J. Quantum Electron. 4, 420-422 (1968).
    [CrossRef]
  10. P. L. Smith, "Mode-locking of lasers," Proc. IEEE 58, 1342-1357 (1968).
    [CrossRef]

2004 (1)

2003 (1)

2001 (1)

1999 (1)

1996 (1)

1993 (2)

1992 (1)

1968 (2)

D. H. Auston, "Transverse mode locking," IEEE J. Quantum Electron. 4, 420-422 (1968).
[CrossRef]

P. L. Smith, "Mode-locking of lasers," Proc. IEEE 58, 1342-1357 (1968).
[CrossRef]

Asom, M. T.

Auston, D. H.

D. H. Auston, "Transverse mode locking," IEEE J. Quantum Electron. 4, 420-422 (1968).
[CrossRef]

Boyd, G. D.

Chen, M.

Chiu, T. H.

Ferguson, J. F.

Fluck, R.

Hönninger, C.

Keller, U.

Li, G.

Miller, D. A. B.

Morier-Genoud, F.

Moser, M.

Paschotta, R.

Smith, P. L.

P. L. Smith, "Mode-locking of lasers," Proc. IEEE 58, 1342-1357 (1968).
[CrossRef]

Wang, Y.

Weingarten, K. J.

Wu, H.-H.

Zhang, B.

Zhang, G.

Zhang, Z.

IEEE J. Quantum Electron. (1)

D. H. Auston, "Transverse mode locking," IEEE J. Quantum Electron. 4, 420-422 (1968).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (5)

Proc. IEEE (1)

P. L. Smith, "Mode-locking of lasers," Proc. IEEE 58, 1342-1357 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of experimental setup.

Fig. 2.
Fig. 2.

The output power as a function of input power. Where the QSML occurs in region 1, the STM CWML in region 2, and the MTMs CWML in region 3.

Fig. 3.
Fig. 3.

Typical waveform (left, time scale: 2μs/div) and RF spectrum (right, frequency span: 600 MHz) of Q-switched mode-locked pulses

Fig. 4.
Fig. 4.

Typical waveform (left, time scale: 2μs/ div) and RF spectrum (right, frequency span: 600 MHz) of cw mode-locked pulses.

Fig. 5.
Fig. 5.

Typical waveform (left, time scale: 2μs/div) and RF spectrum (right, frequency span: 600 MHz) of multiple transverse modes cw mode-locked pulses.

Fig. 6.
Fig. 6.

The output power as a function of the distance d1.

Fig. 7.
Fig. 7.

Typical waveform (left, time scale: 2μs/div) and RF spectrum (right, frequency span: 600 MHz) of multiple transverse modes Q-switched mode-locked pulses.

Fig. 8.
Fig. 8.

The laser output patterns observed in different regions (d1 increases from left to right). In region iv the laser beam was splitting into multiple spots (three centered patterns). In other regions the laser output exhibited only one spot (similar to two side-patterns).

Fig. 9.
Fig. 9.

Typical Q-switched waveforms (time scale: 20 μs/div) of multiple transverse mode Q-switched mode-locked pulses. The laser pattern and beam spots to be detected which are indicated by a blank square are also shown. Left waveforms were measured from the same spot or different spots (as shown) of the same off-axis beam and right waveforms were measured from different spots that did not form the off-axis beam.

Fig. 10.
Fig. 10.

Typical mode-locked waveforms (time scale: 10 ns/div) of multiple transverse mode Q-switched mode-locked pulses. The laser pattern and beam spots to be detected which are indicated by a blank square are also shown. Left waveforms were measured from the same spot and right waveforms were measured from different spots that form off-axis beam. The period of pulse train is about 16.677 ns corresponding to the double of the cavity round trip time.

Metrics