Abstract

A distributed feedback (DFB) semiconductor laser with equivalent phase shifts and chirps is proposed for the first time to our knowledge and is investigated numerically. As an example, it is shown that the desired λ/4 phase shift in a phase-shifted laser can be obtained equivalently by a specially designed sampling structure instead of an actual phase shift, while the external characteristics are unchanged. This novel DFB structure is advantageous in that it can be fabricated by standard holographic technology. Hence, the proposed scheme is expected to provide a low-cost method for fabricating a high-performance DFB semiconductor laser with complex structures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Akiba, M. Usami, and K. Utaka, "1.5-µm λ/4-shifted InGaAsP/InP DFB lasers," IEEE J. Lightwave Technol. 5, 1564-1573 (1987).
    [CrossRef]
  2. J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
    [CrossRef]
  3. W. K. Chan, J. Chung, and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
    [CrossRef]
  4. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
    [CrossRef] [PubMed]
  5. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
    [CrossRef]
  6. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
    [CrossRef] [PubMed]
  7. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
    [CrossRef]
  8. G. P. Agrawal and A. H. Bobeck, "Modeling of distributed feedback semiconductor lasers with axially-varying parameters," IEEE J. Quantum Electron. 24, 2407-2414 (1988).
    [CrossRef]
  9. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
    [CrossRef]
  10. H. Soda and H. Imai, "Analysis of the spectrum behavior below the threshold in DFB lasers," IEEE J. Quantum Electron. 22, 637-641 (1986).
    [CrossRef]
  11. S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
    [CrossRef]

2006 (1)

2004 (3)

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

1995 (1)

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

1994 (1)

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

1989 (1)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

1988 (2)

G. P. Agrawal and A. H. Bobeck, "Modeling of distributed feedback semiconductor lasers with axially-varying parameters," IEEE J. Quantum Electron. 24, 2407-2414 (1988).
[CrossRef]

W. K. Chan, J. Chung, and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

1987 (1)

S. Akiba, M. Usami, and K. Utaka, "1.5-µm λ/4-shifted InGaAsP/InP DFB lasers," IEEE J. Lightwave Technol. 5, 1564-1573 (1987).
[CrossRef]

1986 (1)

H. Soda and H. Imai, "Analysis of the spectrum behavior below the threshold in DFB lasers," IEEE J. Quantum Electron. 22, 637-641 (1986).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and A. H. Bobeck, "Modeling of distributed feedback semiconductor lasers with axially-varying parameters," IEEE J. Quantum Electron. 24, 2407-2414 (1988).
[CrossRef]

Akiba, S.

S. Akiba, M. Usami, and K. Utaka, "1.5-µm λ/4-shifted InGaAsP/InP DFB lasers," IEEE J. Lightwave Technol. 5, 1564-1573 (1987).
[CrossRef]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Bobeck, A. H.

G. P. Agrawal and A. H. Bobeck, "Modeling of distributed feedback semiconductor lasers with axially-varying parameters," IEEE J. Quantum Electron. 24, 2407-2414 (1988).
[CrossRef]

Chan, W. K.

W. K. Chan, J. Chung, and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Chen, X.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Chung, J.

W. K. Chan, J. Chung, and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Contolini, R. J.

W. K. Chan, J. Chung, and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Fan, C.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Hong, J.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Huang, W. P.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Imai, H.

H. Soda and H. Imai, "Analysis of the spectrum behavior below the threshold in DFB lasers," IEEE J. Quantum Electron. 22, 637-641 (1986).
[CrossRef]

Jiang, D.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Kjellberg, T.

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

Klinga, T.

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

Liu, H.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Makino, T.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Nilsson, S.

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

Pakulski, G.

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

Schatz, R. Z.

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

Soda, H.

H. Soda and H. Imai, "Analysis of the spectrum behavior below the threshold in DFB lasers," IEEE J. Quantum Electron. 22, 637-641 (1986).
[CrossRef]

Streubel, K.

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

Sun, J.

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Usami, M.

S. Akiba, M. Usami, and K. Utaka, "1.5-µm λ/4-shifted InGaAsP/InP DFB lasers," IEEE J. Lightwave Technol. 5, 1564-1573 (1987).
[CrossRef]

Utaka, K.

S. Akiba, M. Usami, and K. Utaka, "1.5-µm λ/4-shifted InGaAsP/InP DFB lasers," IEEE J. Lightwave Technol. 5, 1564-1573 (1987).
[CrossRef]

Wallin, J.

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

Xia, L.

Xie, S.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction equivalent-chirp technique," Opt. Lett. 31, 1618-1620 (2006).
[CrossRef] [PubMed]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp," Opt. Lett. 29, 1333-1335 (2004).
[CrossRef] [PubMed]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Yao, Y.

Zhang, Y.

Appl. Opt. (1)

W. K. Chan, J. Chung, and R. J. Contolini, "Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist," Appl. Opt. 127, 1377-1380 (1988).
[CrossRef]

IEE Proc. Optoelectron. (1)

J. Hong, W. P. Huang, T. Makino, and G. Pakulski, "Static and dynamic characteristics of MQW DFB lasers with varying ridge width," IEE Proc. Optoelectron. 141, 303-310 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (2)

S. Akiba, M. Usami, and K. Utaka, "1.5-µm λ/4-shifted InGaAsP/InP DFB lasers," IEEE J. Lightwave Technol. 5, 1564-1573 (1987).
[CrossRef]

S. Nilsson, T. Kjellberg, T. Klinga, R. Z. Schatz, J. Wallin, and K. Streubel, "Improved spectral characteristics of MQW-DFB lasers by incorporation of multiple phase-shifts," IEEE J. Lightwave Technol. 13, 434-441 (1995).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. P. Agrawal and A. H. Bobeck, "Modeling of distributed feedback semiconductor lasers with axially-varying parameters," IEEE J. Quantum Electron. 24, 2407-2414 (1988).
[CrossRef]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, "The design and assessment of λ/4 phase-shifted DFB laser structures," IEEE J. Quantum Electron. 25, 1261-1279 (1989).
[CrossRef]

H. Soda and H. Imai, "Analysis of the spectrum behavior below the threshold in DFB lasers," IEEE J. Quantum Electron. 22, 637-641 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A novel distributed feedback fiber laser based on equivalent phase shift," IEEE Photon. Technol. Lett. 16, 2598-2600 (2004).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, "Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period," IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the DFB structure with (a) equivalent phase shift and (b) actual phase shift.

Fig. 2.
Fig. 2.

Schematic diagram of channel locations with respect to the gain curve: H: with decreased sampling period and unchanged grating period, the lasing wavelength will be shifted rightward.

Fig. 3.
Fig. 3.

(a) Left: Calculated P-I curve of DFB semiconductor laser with a real λ/4 shift (dotted line) or an equivalent λ/4 shift (solid line). Right: P-I curve of one of the gap-modes in the zero-order channel of the DFB laser with equivalent λ/4 shift. (b) Light intensity distribution in the DFB laser with a real λ/4 shift (dotted line) or an equivalent λ/4 shift (solid line). The output power is 8 mW for both lasers.

Fig. 4.
Fig. 4.

The simulated lasing spectra of the DFB lasers with actual (dotted line) and equivalent (solid line) π-phase shift. Power output for both lasers is about 8mW.

Fig. 5.
Fig. 5.

(a) Calculated P-I curve of a DFB semiconductor laser with multiple real phase shifts (dotted line) or multiple equivalent phase shifts (solid line). (b) Light intensity distribution in the DFB laser with multiple real phase shifts (dotted line) or multiple equivalent phase shifts (solid line). The output power is ~9.03mW for both lasers.

Tables (1)

Tables Icon

Table 1. Parameters used in the simulation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ = 2 π ( D P 1 2 ) , P 2 D < 3 P 2

Metrics