Abstract

Microstructures with the total length of hundreds of μ m were induced by fixing the focal point of the femtosecond laser at a certain depth in the bulk of SrTiO3 crystal. By different combination of the focusing conditions with the laser parameters, different morphologies have been observed, such as void array, necklace-shaped structures, continuous/ segmental filaments and etc. The possible mechanism of the formation of those diversiform structures is discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Motion of bubble in solid by femtosecond laser pulses

Wataru Watanabe and Kazuyoshi Itoh
Opt. Express 10(14) 603-608 (2002)

Color center production by femtosecond pulse laser irradiation in LiF crystals

Lilia Coronato Courrol, Ricardo Elgul Samad, Laércio Gomes, Izilda Márcia Ranieri, Sonia Licia Baldochi, Anderson Zanardi de Freitas, and Nilson Dias Vieira Junior
Opt. Express 12(2) 288-293 (2004)

Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses

Satoshi Onda, Wataru Watanabe, Kazuhiro Yamada, Kazuyoshi Itoh, and Junji Nishii
J. Opt. Soc. Am. B 22(11) 2437-2443 (2005)

References

  • View by:
  • |
  • |
  • |

  1. B. Gersten and J. Synowczynski, “Simulation of realizable photonic bandgap structures with high refractive contrast,” Mat. Res. Soc. 692, K.5.6.1 (2002).
  2. K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).
  3. K. Itoh, “Laser microengineering of photonic devices in glass,” J. Laser Micro/Nano. 1, 1 (2006).
    [Crossref]
  4. S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
    [Crossref]
  5. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication in fused silica by femtosecond laser processing,” Appl.Phys. Lett. 87, 171103 (2005).
    [Crossref]
  6. H. Katsu, H. Tanaka, and T. Kawai, “Anomalous Photoconductivity in SrTiO3,” Jpn. J. Appl. Phys. 39, 2657 (2000).
    [Crossref]
  7. R. Adair, L. L Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337(1989).
    [Crossref]
  8. M. Cardona, “Optical properties and band structure of SrTiO3 and BaTiO3,”Jpn. J. Appl. Phys. 39, 2657 (2000).9.N. Akozbek and C. M. Bowden,“Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61,4540 (2000).
  9. S. L. Chin, “Some fundamental concepts of femtosecond laser filamentation,” J. Korean Phys. Soc. 49, 281(2006).
  10. Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
    [Crossref]
  11. S. -H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser,” Appl. Phys. A 359, 77 (2003).

2006 (3)

K. Itoh, “Laser microengineering of photonic devices in glass,” J. Laser Micro/Nano. 1, 1 (2006).
[Crossref]

S. L. Chin, “Some fundamental concepts of femtosecond laser filamentation,” J. Korean Phys. Soc. 49, 281(2006).

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

2005 (2)

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication in fused silica by femtosecond laser processing,” Appl.Phys. Lett. 87, 171103 (2005).
[Crossref]

2003 (2)

S. -H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser,” Appl. Phys. A 359, 77 (2003).

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

2002 (1)

B. Gersten and J. Synowczynski, “Simulation of realizable photonic bandgap structures with high refractive contrast,” Mat. Res. Soc. 692, K.5.6.1 (2002).

2000 (2)

H. Katsu, H. Tanaka, and T. Kawai, “Anomalous Photoconductivity in SrTiO3,” Jpn. J. Appl. Phys. 39, 2657 (2000).
[Crossref]

M. Cardona, “Optical properties and band structure of SrTiO3 and BaTiO3,”Jpn. J. Appl. Phys. 39, 2657 (2000).9.N. Akozbek and C. M. Bowden,“Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61,4540 (2000).

1989 (1)

R. Adair, L. L Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337(1989).
[Crossref]

Adair, R.

R. Adair, L. L Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337(1989).
[Crossref]

Cardona, M.

M. Cardona, “Optical properties and band structure of SrTiO3 and BaTiO3,”Jpn. J. Appl. Phys. 39, 2657 (2000).9.N. Akozbek and C. M. Bowden,“Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61,4540 (2000).

Chase, L. L

R. Adair, L. L Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337(1989).
[Crossref]

Chin, S. L.

S. L. Chin, “Some fundamental concepts of femtosecond laser filamentation,” J. Korean Phys. Soc. 49, 281(2006).

Cho, S. -H.

S. -H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser,” Appl. Phys. A 359, 77 (2003).

Fujita, K.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

GAN, G. K.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Gersten, B.

B. Gersten and J. Synowczynski, “Simulation of realizable photonic bandgap structures with high refractive contrast,” Mat. Res. Soc. 692, K.5.6.1 (2002).

Hee, C. W.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Hirao, K.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

Itoh, K.

K. Itoh, “Laser microengineering of photonic devices in glass,” J. Laser Micro/Nano. 1, 1 (2006).
[Crossref]

Jiang, X. W.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

Kamata, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication in fused silica by femtosecond laser processing,” Appl.Phys. Lett. 87, 171103 (2005).
[Crossref]

Kanebira, S.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

Katsu, H.

H. Katsu, H. Tanaka, and T. Kawai, “Anomalous Photoconductivity in SrTiO3,” Jpn. J. Appl. Phys. 39, 2657 (2000).
[Crossref]

Kawai, T.

H. Katsu, H. Tanaka, and T. Kawai, “Anomalous Photoconductivity in SrTiO3,” Jpn. J. Appl. Phys. 39, 2657 (2000).
[Crossref]

Kumagai, H.

S. -H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser,” Appl. Phys. A 359, 77 (2003).

Liang, W. L.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Midorikawa, K.

S. -H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser,” Appl. Phys. A 359, 77 (2003).

Obara, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication in fused silica by femtosecond laser processing,” Appl.Phys. Lett. 87, 171103 (2005).
[Crossref]

Payne, S. A.

R. Adair, L. L Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337(1989).
[Crossref]

Qiu, J. R.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

Qiu, J.R.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

Si, J.H.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

Sivakumar, N. R.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Synowczynski, J.

B. Gersten and J. Synowczynski, “Simulation of realizable photonic bandgap structures with high refractive contrast,” Mat. Res. Soc. 692, K.5.6.1 (2002).

Tan, B.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Tanaka, H.

H. Katsu, H. Tanaka, and T. Kawai, “Anomalous Photoconductivity in SrTiO3,” Jpn. J. Appl. Phys. 39, 2657 (2000).
[Crossref]

Toratani, E.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication in fused silica by femtosecond laser processing,” Appl.Phys. Lett. 87, 171103 (2005).
[Crossref]

Venkatakrishnan, K.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Zhao, C. J.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

Zhao, Q. Z.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

Zhu, C. S.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

Appl. Phys. A (1)

S. -H. Cho, H. Kumagai, and K. Midorikawa, “Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser,” Appl. Phys. A 359, 77 (2003).

Appl. Phys. B (1)

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. GAN, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. B 77, 959 (2003).

Appl.Phys. Lett. (1)

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication in fused silica by femtosecond laser processing,” Appl.Phys. Lett. 87, 171103 (2005).
[Crossref]

J. Appl. Phys. (1)

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, “Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses,” J. Appl. Phys. 96, 7122 (2006).
[Crossref]

J. Korean Phys. Soc. (1)

S. L. Chin, “Some fundamental concepts of femtosecond laser filamentation,” J. Korean Phys. Soc. 49, 281(2006).

J. Laser Micro/Nano. (1)

K. Itoh, “Laser microengineering of photonic devices in glass,” J. Laser Micro/Nano. 1, 1 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Katsu, H. Tanaka, and T. Kawai, “Anomalous Photoconductivity in SrTiO3,” Jpn. J. Appl. Phys. 39, 2657 (2000).
[Crossref]

M. Cardona, “Optical properties and band structure of SrTiO3 and BaTiO3,”Jpn. J. Appl. Phys. 39, 2657 (2000).9.N. Akozbek and C. M. Bowden,“Femtosecond pulse propagation in air: Variational analysis,” Phys. Rev. E 61,4540 (2000).

Mat. Res. Soc. (1)

B. Gersten and J. Synowczynski, “Simulation of realizable photonic bandgap structures with high refractive contrast,” Mat. Res. Soc. 692, K.5.6.1 (2002).

Nano Lett. (1)

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita, and K. Hirao, “Peoriodic nanovoid Structures via femtosecond laser irradiation,” Nano Lett. 5, 1591 (2005).
[Crossref]

Phys. Rev. B (1)

R. Adair, L. L Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337(1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A schematic of the laser processing setup

Fig. 2.
Fig. 2.

Optical microscope photographs of the filaments induced by a single pulse. The pulse energy was 70μ J (a) and 35.7μ J (b), respectively. The focusing lenses were 100× and 50×, respectively. The focal depth both were 200μ m.

Fig. 3.
Fig. 3.

Optical microscope photograph of the void array formed in SrTiO3 crystal at the focal depth of 400μ m after 1/16 s irradiation of laser pulses with energy of 12.5μ J (a) and 14.25μ J (b). 50× microscope lens was used.

Fig. 4.
Fig. 4.

The side view of two void strings in SrTiO3 crystal induced by 8 laser pulses with energy of 36.7μ J (a) and 38.1μ J (b). The focal depth is 400μ m and the 50× microscope was used.

Fig. 5.
Fig. 5.

The void strings induced at different focal depths. The pulse energy was fixed at 41.7μ J, and the pulse number was 125. The focusing objective lens with 100× and NA=0.9 was used.

Fig. 6.
Fig. 6.

Optical microscope photograph of the filamentation before the void array appeared. Laser beam with pulse energy of 24μ J was focused at the focal depth of 1 50μ m by a 50× object lens. The irradiation time was 1/63 s and 1/32 s respectively.

Fig. 7.
Fig. 7.

Optical microscope photograph of the microstructures induced by one pulse (above) and two pulse (below). Laser beam with pulse energy of 70μ J was focused at a focal depth of 100μ m beneath the surface by a 100× object lens.

Metrics