Abstract

Microstructures with the total length of hundreds of μ m were induced by fixing the focal point of the femtosecond laser at a certain depth in the bulk of SrTiO3 crystal. By different combination of the focusing conditions with the laser parameters, different morphologies have been observed, such as void array, necklace-shaped structures, continuous/ segmental filaments and etc. The possible mechanism of the formation of those diversiform structures is discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Gersten and J. Synowczynski, "Simulation of realizable photonic bandgap structures with high refractive contrast," Mat. Res. Soc. 692, K.5.6.1 (2002).
  2. K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).
  3. K. Itoh, "Laser microengineering of photonic devices in glass," J. Laser Micro/Nano. 1,1 (2006).
    [CrossRef]
  4. S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
    [CrossRef]
  5. E. Toratani, M. Kamata, and M. Obara, "Self-fabrication in fused silica by femtosecond laser processing," Appl.Phys. Lett. 87, 171103 (2005).
    [CrossRef]
  6. H. Katsu, H. Tanaka and T. Kawai, "Anomalous Photoconductivity in SrTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000).
    [CrossRef]
  7. R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337(1989).
    [CrossRef]
  8. M. Cardona, "Optical properties and band structure of SrTiO3 and BaTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000). 9. N. Akozbek and C. M. Bowden, "Femtosecond pulse propagation in air: Variational analysis," Phys. Rev. E 61, 4540 (2000).
  9. S. L. Chin, "Some fundamental concepts of femtosecond laser filamentation," J. Korean Phys. Soc. 49, 281 (2006).
  10. Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
    [CrossRef]
  11. S. -H. Cho, H. Kumagai and K. Midorikawa, "Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser," Appl. Phys. A 359, 77 (2003).

2006 (2)

S. L. Chin, "Some fundamental concepts of femtosecond laser filamentation," J. Korean Phys. Soc. 49, 281 (2006).

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

2005 (2)

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

E. Toratani, M. Kamata, and M. Obara, "Self-fabrication in fused silica by femtosecond laser processing," Appl.Phys. Lett. 87, 171103 (2005).
[CrossRef]

2003 (2)

S. -H. Cho, H. Kumagai and K. Midorikawa, "Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser," Appl. Phys. A 359, 77 (2003).

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

2000 (2)

M. Cardona, "Optical properties and band structure of SrTiO3 and BaTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000). 9. N. Akozbek and C. M. Bowden, "Femtosecond pulse propagation in air: Variational analysis," Phys. Rev. E 61, 4540 (2000).

H. Katsu, H. Tanaka and T. Kawai, "Anomalous Photoconductivity in SrTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000).
[CrossRef]

1989 (1)

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337(1989).
[CrossRef]

Adair, R.

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337(1989).
[CrossRef]

Cardona, M.

M. Cardona, "Optical properties and band structure of SrTiO3 and BaTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000). 9. N. Akozbek and C. M. Bowden, "Femtosecond pulse propagation in air: Variational analysis," Phys. Rev. E 61, 4540 (2000).

Chase, L. L.

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337(1989).
[CrossRef]

Chin, S. L.

S. L. Chin, "Some fundamental concepts of femtosecond laser filamentation," J. Korean Phys. Soc. 49, 281 (2006).

Cho, S. -H.

S. -H. Cho, H. Kumagai and K. Midorikawa, "Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser," Appl. Phys. A 359, 77 (2003).

Fujita, K.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

GAN, G. K

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Hee, C. W.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Hirao, K.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

Jiang, X. W.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

Kamata, M.

E. Toratani, M. Kamata, and M. Obara, "Self-fabrication in fused silica by femtosecond laser processing," Appl.Phys. Lett. 87, 171103 (2005).
[CrossRef]

Kanebira, S.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

Katsu, H.

H. Katsu, H. Tanaka and T. Kawai, "Anomalous Photoconductivity in SrTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000).
[CrossRef]

Kawai, T.

H. Katsu, H. Tanaka and T. Kawai, "Anomalous Photoconductivity in SrTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000).
[CrossRef]

Kumagai, H.

S. -H. Cho, H. Kumagai and K. Midorikawa, "Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser," Appl. Phys. A 359, 77 (2003).

Liang, W. L.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Midorikawa, K.

S. -H. Cho, H. Kumagai and K. Midorikawa, "Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser," Appl. Phys. A 359, 77 (2003).

Obara, M.

E. Toratani, M. Kamata, and M. Obara, "Self-fabrication in fused silica by femtosecond laser processing," Appl.Phys. Lett. 87, 171103 (2005).
[CrossRef]

Payne, S. A.

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337(1989).
[CrossRef]

Qiu, J. R.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

Qiu, J.R.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

Si, J.H.

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

Sivakumar, N. R.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Tan, B.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Tanaka, H.

H. Katsu, H. Tanaka and T. Kawai, "Anomalous Photoconductivity in SrTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000).
[CrossRef]

Toratani, E.

E. Toratani, M. Kamata, and M. Obara, "Self-fabrication in fused silica by femtosecond laser processing," Appl.Phys. Lett. 87, 171103 (2005).
[CrossRef]

Venkatakrishnan, K.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Zhao, C. J.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

Zhao, Q. Z.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

Zhu, C. S.

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

Appl. Phys. A (1)

S. -H. Cho, H. Kumagai and K. Midorikawa, "Fabrication of single-mode waveguide structure in optical multimode fluoride fibers using self-channeled plasma filaments excited by a femtosecond laser," Appl. Phys. A 359, 77 (2003).

Appl. Phys. B (1)

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K . GAN, "Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser," Appl. Phys. B 77, 959 (2003).

Appl.Phys. Lett. (1)

E. Toratani, M. Kamata, and M. Obara, "Self-fabrication in fused silica by femtosecond laser processing," Appl.Phys. Lett. 87, 171103 (2005).
[CrossRef]

J. Appl. Phys. (1)

Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, C. S. Zhu, "Mechanisms of the refractive index change in femtosecond laser-irradiated Au3+-doped silicate glasses," J. Appl. Phys. 96, 7122 (2006).
[CrossRef]

J. Korean Phys. Soc. (1)

S. L. Chin, "Some fundamental concepts of femtosecond laser filamentation," J. Korean Phys. Soc. 49, 281 (2006).

Jpn. J. Appl. Phys. (1)

H. Katsu, H. Tanaka and T. Kawai, "Anomalous Photoconductivity in SrTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000).
[CrossRef]

Nano Lett. (1)

S. Kanebira, J.H. Si, J.R. Qiu, K. Fujita and K. Hirao, "Peoriodic nanovoid Structures via femtosecond laser irradiation," Nano Lett. 5, 1591 (2005).
[CrossRef]

Phys. Rev. B (1)

R. Adair, L. L. Chase and S. A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337(1989).
[CrossRef]

Phys. Rev. E (1)

M. Cardona, "Optical properties and band structure of SrTiO3 and BaTiO3," Jpn. J. Appl. Phys. 39, 2657 (2000). 9. N. Akozbek and C. M. Bowden, "Femtosecond pulse propagation in air: Variational analysis," Phys. Rev. E 61, 4540 (2000).

Other (2)

B. Gersten and J. Synowczynski, "Simulation of realizable photonic bandgap structures with high refractive contrast," Mat. Res. Soc. 692, K.5.6.1 (2002).

K. Itoh, "Laser microengineering of photonic devices in glass," J. Laser Micro/Nano. 1,1 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A schematic of the laser processing setup

Fig. 2.
Fig. 2.

Optical microscope photographs of the filaments induced by a single pulse. The pulse energy was 70μ J (a) and 35.7μ J (b), respectively. The focusing lenses were 100× and 50×, respectively. The focal depth both were 200μ m.

Fig. 3.
Fig. 3.

Optical microscope photograph of the void array formed in SrTiO3 crystal at the focal depth of 400μ m after 1/16 s irradiation of laser pulses with energy of 12.5μ J (a) and 14.25μ J (b). 50× microscope lens was used.

Fig. 4.
Fig. 4.

The side view of two void strings in SrTiO3 crystal induced by 8 laser pulses with energy of 36.7μ J (a) and 38.1μ J (b). The focal depth is 400μ m and the 50× microscope was used.

Fig. 5.
Fig. 5.

The void strings induced at different focal depths. The pulse energy was fixed at 41.7μ J, and the pulse number was 125. The focusing objective lens with 100× and NA=0.9 was used.

Fig. 6.
Fig. 6.

Optical microscope photograph of the filamentation before the void array appeared. Laser beam with pulse energy of 24μ J was focused at the focal depth of 1 50μ m by a 50× object lens. The irradiation time was 1/63 s and 1/32 s respectively.

Fig. 7.
Fig. 7.

Optical microscope photograph of the microstructures induced by one pulse (above) and two pulse (below). Laser beam with pulse energy of 70μ J was focused at a focal depth of 100μ m beneath the surface by a 100× object lens.

Metrics