Abstract

A high refractive index Te-enriched bulk chalcogenide glass Ge20As20Se14Te46 (n≈3.3) has been patterned by ablation using four- and two-beam interference femto-second laser setups operating at 800 nm. The regular arrays of 0.8 μm diameter and more than 0.8 μm depth holes and/or grooves of typical size of 1×1 mm2 have been written on the surface of the glass in a time-scale of 1 second with 50 femtosecond pulses. The high photosensitivity of this narrow-gap semiconductor glass to the femtosecond irradiation is ascribed to a free electron absorption typical of metals, which is caused by laser-induced heating of the glass.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
    [CrossRef]
  2. D. Freeman, S. Madden, and B. Luther-Davies, "Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005).
    [CrossRef] [PubMed]
  3. V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
    [CrossRef]
  4. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
    [CrossRef]
  5. A. Feigel, M. Veinger, S: Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
    [CrossRef]
  6. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
    [CrossRef]
  7. M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
    [CrossRef]
  8. V. K. Tikhomirov, "Chalcogenide glasses for photonic crystal applications," presented at the NATO ASI "Photonic crystals and localization of light," Heraklion, Greece, 12-26 June 2000.
  9. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Show, and I.D. Aggarwal, "Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibres," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  10. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
    [CrossRef] [PubMed]
  11. K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
    [CrossRef]
  12. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, "Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes," 14, 369-376 (2006).
  13. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006).
    [CrossRef] [PubMed]
  14. J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004).
    [CrossRef]
  15. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
    [CrossRef]
  16. Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004).
    [CrossRef]
  17. Y.-C. Kim and Y. R. Do, "Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting," Opt. Express 13, 1598-1603 (2005).
    [CrossRef] [PubMed]
  18. N. J. Baker, H. W. Lee, I. C. Littler, C. M. de Sterke, B.J . Eggleton, D.-Y. Choi, S. Madden, B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006).
    [CrossRef] [PubMed]
  19. A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
    [CrossRef]

2006 (5)

2005 (4)

Y.-C. Kim and Y. R. Do, "Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting," Opt. Express 13, 1598-1603 (2005).
[CrossRef] [PubMed]

D. Freeman, S. Madden, and B. Luther-Davies, "Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

2004 (4)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004).
[CrossRef]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Show, and I.D. Aggarwal, "Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibres," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
[CrossRef]

2003 (2)

A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
[CrossRef]

A. Feigel, M. Veinger, S: Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

2001 (2)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Abouraddy, A. F.

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

Adawi, A. M.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Aggarwal, I. D.

Ariu, M.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Arnold, J.

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

Astratov, V. N.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Baker, N.

K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Baker, N. J.

Bayindir, M.

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

Bekesi, J.

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
[CrossRef]

Choi, D.

K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Choi, D. Y.

Choi, D.-Y.

de Sterke, C. M.

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Do, Y. R.

Eggleton, B.

Eggleton, B. J.

Feigel, A.

A. Feigel, M. Veinger, S: Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Fink, Y.

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

Finsterbusch, K.

K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Freeman, D.

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

Grillet, C.

Haugen, H. K.

A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
[CrossRef]

Hodelin, J.

Joannopoulos, J. D.

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Kim, Y.-C.

Klein-Wiele, J.H.

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004).
[CrossRef]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Lamont, M. R. E.

Lee, H. W.

Lenz, G.

Lewis, K. L.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

Lidzey, D. G.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Littler, I. C.

Luther-Davies, B.

Lyubin, V. M.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Madden, S.

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004).
[CrossRef]

Magi, E.

Mason, P. D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Moss, D.

Moss, D. J.

Nakata, Y.

Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004).
[CrossRef]

Okada, T.

Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004).
[CrossRef]

Orchard, D. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Reynolds, A. L.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Sanghera, J.

Savage, J. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

Saygin-Hinczewski, D.

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

Seddon, A. B.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

Shapira, O.

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

Show, L. B.

Simon, P.

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004).
[CrossRef]

Skolnik, M. S.

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

Slusher, R. E.

Smith, C.

Ta’eed, V. G.

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006).
[CrossRef] [PubMed]

K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

van Freymann, G.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Veinger, M.

A. Feigel, M. Veinger, S: Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Viens, J.

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

Wegener, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

Adv. Mater. (2)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006).
[CrossRef]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005).
[CrossRef]

Appl. Phys. A (2)

J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

A. Feigel, M. Veinger, S: Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003).
[CrossRef]

Electron. Lett. (1)

K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006).
[CrossRef]

Infrared Phys. Technol. (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005).
[CrossRef]

Opt. Express (5)

Other (2)

C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, "Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes," 14, 369-376 (2006).

V. K. Tikhomirov, "Chalcogenide glasses for photonic crystal applications," presented at the NATO ASI "Photonic crystals and localization of light," Heraklion, Greece, 12-26 June 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scanning electron microscope (SEM) images of the surface relief of the Ge20As20Se14Te46 glass consisting of air holes (a) or air grooves (b) written in 1 second by means of four (a) and two (b) interfering beams of the fs Ti-sapphire laser, as described in Experimental. The dark spots in (a) and wide dark bands in (b) are the depths of the relief. Some ablated and precipitated powder material is seen as bright irregular shapes between the holes in (a) and as bright sparkling points in (b). The laser parameters were: λ,=800 nm, pulse duration 100 fs, repetition rate 50 Hz (i.e. 50 fs pulses in 1 second of this writing), irradiance 100 μJ/pulse/cm2. The interference half-angle equals to 20° for each of the couples of the interfering beams in (a) and for one couple of the interfering beams in (b).

Fig. 2.
Fig. 2.

The relief patterns on the surface on the Ge20As20Se14Te46 glass consisting of air grooves (wide dark parallel lines) and glass ribs (bright parallel lines) perforated by air holes (small dark spots). The laser writing parameters are as in Fig.1, but an irradiance of the source Ti:sapphire laser beam was at 150 μ/pulse/cm2.

Fig. 3.
Fig. 3.

A magnified image of the grooves (dark wide parallel lines) written on the surface on the Ge20As20Se14Te46 glass by means of two interfering beams; writing conditions as in Fig.1(b). The sparkling bright spots represent the ablated powder precipitated on the surface, as in Fig. 1(b).

Metrics