Abstract

Here we report a racetrack resonator laser integrated with two photo-detectors on the hybrid AlGaInAs-silicon evanescent device platform. Unlike previous demonstrations of hybrid AlGaInAs-silicon evanescent lasers, we demonstrate an on-chip racetrack resonator laser that does not rely on facet polishing and dicing in order to define the laser cavity. The laser runs continuous-wave (c.w.) at 1590 nm with a threshold of 175 mA, has a maximum total output power of 29 mW and a maximum operating temperature of 60 C. The output of this laser light is directly coupled into a pair of on chip hybrid AlGaInAs-silicon evanescent photodetectors used to measure the laser output. OCIS codes: (140.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "The optical age of silicon." Nature 427, 615−618 (2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, West Sussex, 2004).
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004).
  4. D. A. Miller, "Optical interconnects to silicon." IEEE J. Sel. Top. Quant. Electron. 6, 1312−1317 (2000).
    [CrossRef]
  5. H. Rong et al. "A continuous-wave Raman silicon laser." Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269 (2004).
    [CrossRef] [PubMed]
  7. R. Espinola, J. Dadap, R. Osgood Jr., S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004).
    [CrossRef] [PubMed]
  8. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005).
    [CrossRef] [PubMed]
  9. P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
    [CrossRef] [PubMed]
  10. R. S. Jacobsen,  et al., "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
    [CrossRef] [PubMed]
  11. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglul, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007).
    [CrossRef] [PubMed]
  12. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  13. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
    [CrossRef] [PubMed]
  14. A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
    [CrossRef]
  15. B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
    [CrossRef]
  16. S. Lombardo,  et al. "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
    [CrossRef]
  17. J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, "Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform, " Opt. Express 15, 623-628 (2007).
    [CrossRef] [PubMed]
  18. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
    [CrossRef] [PubMed]
  19. H. Park, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, "40 C Continuous-Wave Electrically Pumped Hybrid Silicon Evanescent Laser," International Semiconductor Laser Conference 2006 (ISLC 2006), post deadline paper, September 2006.
  20. D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118 (2002).
    [CrossRef]
  21. H. Boudinov, H. H. Tan, and C. Jagadish., "Electrical isolation of n-type and p-type InP layers by proton bombardment," J. Appl. Phys. 89, 5343-5347, (2001).
    [CrossRef]

2007 (2)

2006 (3)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006).
[CrossRef] [PubMed]

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

R. S. Jacobsen,  et al., "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Rong et al. "A continuous-wave Raman silicon laser." Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
[CrossRef]

2002 (1)

D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118 (2002).
[CrossRef]

2000 (3)

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

D. A. Miller, "Optical interconnects to silicon." IEEE J. Sel. Top. Quant. Electron. 6, 1312−1317 (2000).
[CrossRef]

1993 (1)

S. Lombardo,  et al. "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Baets, R.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bowers, J. E.

Boyraz, O.

Chetrit, Y.

Ciftcioglul, B.

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Cohen, O.

Dadap, J.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Di Cioccio, L.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Espinola, R.

Fang, A. W.

Fedeli, J. M.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Gelloz, B.

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

Hollinger, G.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Irrera, A.

A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
[CrossRef]

Izhaky, N.

Jacobsen, R. S.

R. S. Jacobsen,  et al., "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Jalali, B.

Jones, R.

Jongthammanurak, S.

Kazmierczak, A.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Kimerling, L. C.

Koshida, N.

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Letartre, X.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Liao, L.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Liu, A.

Liu, J.

Lombardo, S.

S. Lombardo,  et al. "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

McNab, S.

Michel, J.

Miller, D. A.

D. A. Miller, "Optical interconnects to silicon." IEEE J. Sel. Top. Quant. Electron. 6, 1312−1317 (2000).
[CrossRef]

Nguyen, H.

Osgood, R.

Pan, D.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

Paniccia, M. J.

Park, H.

Pasquariello, D.

D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118 (2002).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, "The optical age of silicon." Nature 427, 615−618 (2004).

Regreny, P.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Rojo Romeo, P.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Rong, H.

H. Rong et al. "A continuous-wave Raman silicon laser." Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Rubin, D.

Seassal, C.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Van Campenhout, J.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Van Thourhout, D.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Vlasov, Y.

Wada, K.

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Lombardo,  et al. "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. (1)

D. A. Miller, "Optical interconnects to silicon." IEEE J. Sel. Top. Quant. Electron. 6, 1312−1317 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118 (2002).
[CrossRef]

J. Appl. Phys. (1)

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005).
[CrossRef] [PubMed]

Nature (5)

G. T. Reed, "The optical age of silicon." Nature 427, 615−618 (2004).

H. Rong et al. "A continuous-wave Raman silicon laser." Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

R. S. Jacobsen,  et al., "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Opt. Express (5)

Optics Express (1)

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006).
[CrossRef] [PubMed]

Physica E (1)

A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
[CrossRef]

Other (4)

H. Park, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, "40 C Continuous-Wave Electrically Pumped Hybrid Silicon Evanescent Laser," International Semiconductor Laser Conference 2006 (ISLC 2006), post deadline paper, September 2006.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, West Sussex, 2004).

L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004).

H. Boudinov, H. H. Tan, and C. Jagadish., "Electrical isolation of n-type and p-type InP layers by proton bombardment," J. Appl. Phys. 89, 5343-5347, (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The hybrid silicon-evanescent device cross section structure.

Fig. 2.
Fig. 2.

a) The layout of the racetrack resonator and the photodetectors. b) A top view SEM micrograph of two racetrack resonator lasers. The racetrack resonator lasers on the top and bottom have radii of 200 and 100 microns, respectively

Fig 3.
Fig 3.

The simulated additional loss due to bending as a function of radius for the fabricated hybrid waveguide structure

Fig. 4.
Fig. 4.

The LI curve for a laser with radius R = 200 microns, and Linteraction = 400 micons for various temperatures

Fig. 5.
Fig. 5.

The hybrid laser spectrum taken at 240mA for a R = 100, Linteraction = 400 micons

Fig. 6.
Fig. 6.

The experimental and fitted threshold currents for the four fabricated racetrack lasers

Fig. 7.
Fig. 7.

The LI curve for the clockwise lasing mode for three forward bias currents for the photodiode on the left of a laser with R = 100 microns, and Linteraction = 100 microns.

Tables (2)

Tables Icon

Table 1 Fabricated racetrack laser dimensions and coupling parameters Computed Feedback Coupling

Tables Icon

Table 2 Max power, differential efficiencies, threshold currents and maximum operating temperatures for the fabricated racetrack lasers

Metrics