Abstract

We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides on a silicon substrate. High-quality Ge23Sb7S70 glass films have been deposited onto oxide coated silicon wafers using thermal evaporation, and high-index-contrast channel waveguides have been defined using SF6 plasma etching. Microfluidic channel patterning in photocurable resin (SU8) and channel sealing by a polydimethylsiloxane (PDMS) cover completed the device fabrication. The chalcogenide waveguides yield a transmission loss of 2.3 dB/cm at 1550 nm. We show in this letter that using this device, N-methylaniline can be detected using its well-defined absorption fingerprint of the N-H bond near 1496 nm. Our measurements indicate linear response of the sensor to varying N-methylaniline concentrations. From our experiments, a sensitivity of this sensor down to a N-methylaniline concentration 0.7 vol. % is expected. Given the low-cost fabrication process used, and robust device configuration, our integration scheme provides a promising device platform for chemical sensing applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Verpoorte and N. De Rooij, "Microfluidics meets MEMS," Proc. IEEE. 91, 930-953 (2003).
    [CrossRef]
  2. P. Friis, K. Hoppe, O. Leistiko, K. Mogensen, J. Hubner, and J. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001).
    [CrossRef]
  3. N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002).
    [CrossRef] [PubMed]
  4. L. Zhu, Y. Huang, and A. Yariv, "Integrated microfluidic variable optical attenuator," Opt. Express 13, 9916-9921 (2005).
    [CrossRef] [PubMed]
  5. T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
    [CrossRef]
  6. Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006).
    [CrossRef]
  7. A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006).
    [CrossRef]
  8. W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
    [CrossRef]
  9. A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
    [CrossRef]
  10. X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
    [CrossRef]
  11. C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
    [CrossRef]
  12. P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
    [CrossRef]
  13. O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
    [CrossRef]
  14. J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
    [CrossRef]
  15. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
    [CrossRef] [PubMed]
  16. J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling, Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, K. Richardson are preparing a manuscript to be called "Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films."
  17. A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
    [CrossRef]
  18. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
    [CrossRef]
  19. R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
    [CrossRef]
  20. C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
    [CrossRef]
  21. S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
    [CrossRef]
  22. J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Low-loss integrated planar chalcogenide waveguides for chemical sensing," Proc. SPIE 6444 (to be published).
  23. V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

2006 (5)

Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006).
[CrossRef]

A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006).
[CrossRef]

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

2005 (3)

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

L. Zhu, Y. Huang, and A. Yariv, "Integrated microfluidic variable optical attenuator," Opt. Express 13, 9916-9921 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004).
[CrossRef] [PubMed]

S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
[CrossRef]

2003 (1)

E. Verpoorte and N. De Rooij, "Microfluidics meets MEMS," Proc. IEEE. 91, 930-953 (2003).
[CrossRef]

2002 (3)

N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002).
[CrossRef] [PubMed]

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

2001 (3)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

P. Friis, K. Hoppe, O. Leistiko, K. Mogensen, J. Hubner, and J. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001).
[CrossRef]

1999 (1)

1997 (1)

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

1994 (1)

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
[CrossRef]

1969 (1)

V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Adamietz, F.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

Ahn, J.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

Ahuja, R.

Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006).
[CrossRef]

Alperovich, L.

V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Baldwin, K.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Boussard-Pledel, C.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Bruneel, J.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Calvez, L.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Cardinal, T.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
[CrossRef]

Carlie, N.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

Chardon, A.

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

Chaudhuri, S.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
[CrossRef]

Choi, Y.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

Chung, W.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

Clement, T.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Couzi, M.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Danto, S.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

De Rooij, N.

E. Verpoorte and N. De Rooij, "Microfluidics meets MEMS," Proc. IEEE. 91, 930-953 (2003).
[CrossRef]

DeCorby, R.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Ding, Y.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Dolinski, M.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Duguay, M.

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
[CrossRef]

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

Dwivedi, P.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Eappen, S.

S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
[CrossRef]

Efimov, O.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Eggleton, B.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Friis, P.

Galstian, T.

Galstyan, T.

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Glebov, L.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Hale, A.

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Haugen, C.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Hewak, D.

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

Hoppe, K.

Houizot, P.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Huang, W.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
[CrossRef]

Huang, Y.

Hubner, J.

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Jarvis, R.

Kasap, S.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Kerbage, C.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Knystautas, E.

Kutter, J.

N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002).
[CrossRef] [PubMed]

P. Friis, K. Hoppe, O. Leistiko, K. Mogensen, J. Hubner, and J. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001).
[CrossRef]

Leistiko, O.

Li, W.

Lucas, J.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Luther-Davies, B.

Ma, H.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Mach, P.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Madsen, N.

Mairaj, A.

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

McMullin, J.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Meneghini, C.

Mikhilov, B.

V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Mogensen, K.

N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002).
[CrossRef] [PubMed]

P. Friis, K. Hoppe, O. Leistiko, K. Mogensen, J. Hubner, and J. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001).
[CrossRef]

Nair, K.

S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
[CrossRef]

Nguyen, H.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Ozols, A.

A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006).
[CrossRef]

Pai, M.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Pantano, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Park, B.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

Park, S.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Petersen, N.

N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002).
[CrossRef] [PubMed]

Petit, L.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

Ponnampalam, N.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

Popov, S.

V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Rasheed, T.

S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
[CrossRef]

Reinfelde, M.

A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006).
[CrossRef]

Richardson, K.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
[CrossRef]

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

Richardson, K. C.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

Riziotis, C.

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

Rode, A.

Rodriguez, V.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

Rogers, J.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Ruan, Y.

Ryan, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Saharovs, D.

A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006).
[CrossRef]

Seo, H.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

Seznec, V.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Shaji, S.

S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
[CrossRef]

Shepherd, D.

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

Smith, P.

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Stern, M.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
[CrossRef]

Sun, Z.

Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006).
[CrossRef]

Van Stryland, E.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Verpoorte, E.

E. Verpoorte and N. De Rooij, "Microfluidics meets MEMS," Proc. IEEE. 91, 930-953 (2003).
[CrossRef]

Viens, J.

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
[CrossRef]

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

Villeneuve, A.

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
[CrossRef]

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

Windeler, R.

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Xu, C.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
[CrossRef]

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Yariv, A.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

Zhang, X.

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Zhou, J.

Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006).
[CrossRef]

Zhu, L.

Zolotarev, V.

V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002).
[CrossRef]

Electrophoresis (1)

N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002).
[CrossRef] [PubMed]

Etri Journal (1)

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005).
[CrossRef]

IEE Proc. Optoelectron. (1)

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

J. Lightwave Technol. (2)

T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997).
[CrossRef]

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999).
[CrossRef]

Mater. Chem. Phys. (1)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Opt. Spectrosc. (1)

V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Phy. Rev. Lett. (1)

Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006).
[CrossRef]

Proc. IEEE. (1)

E. Verpoorte and N. De Rooij, "Microfluidics meets MEMS," Proc. IEEE. 91, 930-953 (2003).
[CrossRef]

Sol. (3)

A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006).
[CrossRef]

A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006).
[CrossRef]

X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006).
[CrossRef]

Spectrochim. Acta, Part A (1)

S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004).
[CrossRef]

Other (2)

J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Low-loss integrated planar chalcogenide waveguides for chemical sensing," Proc. SPIE 6444 (to be published).

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling, Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, K. Richardson are preparing a manuscript to be called "Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic processing flow of the microfluidic sensor chip integrated with Ge23Sb7S70 waveguides.

Fig. 2.
Fig. 2.

Photo of the assembled microfluidic chip with fluid inlet and outlet tubing; the microfluidic channels and Ge23Sb7S70 waveguides are too small to resolve in the image.

Fig. 3.
Fig. 3.

(a). Schematic of the measurement setup for transmission loss in waveguide and absorption in sensor; (b) Near field image of 1550nm optical output from a Ge23Sb7S70 waveguide. The modal FWHM (Full Width at Half Maximum) is measured to be 4.3 μm by 1.0 μm. Inset: TM waveguide mode profile simulated using a finite domain technique20.

Fig. 4.
Fig. 4.

(a). SEM cross-section of a 50 μm wide SU8 microfluidic channel before being capped with a PDMS cover; Insets: the high magnification cross-sectional micrographs of the Ge23Sb7S70 waveguides formed by SF6 plasma etching sitting at the bottom of the channel, showing a vertical sidewall profile. The slightly darker area on the left side is an artifact due to electronic charge accumulation during SEM observation; (b) Fluorescent image of a microfluidic channel filled with FITC (fluorescein isothiocyanate) solution on a sensor chip, indicating successful fluid injection into the channel free of leakage.

Fig. 5.
Fig. 5.

(a). Absorption spectrum showing the N-H bond absorption at 1496 nm wavelength in N-methylaniline measured using our integrated evanescent sensor. The absorption is defined by taking the ratio of light transmission in the case of a microfluidic channel filled with pure carbon tetrachloride against the case when the channel is filled with N-methylaniline solution in carbon tetrachloride (0.33, volumetric concentration). (b) Transmission spectra of pure N-methylaniline and carbon tetrachloride (CCl4) measured using traditional UV-Vis spectroscopy. The absorption spectrum of N-methylaniline shows the same N-H absorption peak near 1496 nm while carbon tetrachloride is transparent in the wavelength range of interest.

Fig. 6.
Fig. 6.

Peak absorption of N-methylaniline solution in carbon tetrachloride measured using the waveguide evanescent sensor as a function of N-methylaniline volume concentration, indicating good linearity of the sensor response.

Fig. 7.
Fig. 7.

Schematic illustration of a fabrication method to eliminate optical coupling related fluctuation within our microfluidic channels: Input laser beam goes through a single-mode waveguide and then a Y-splitter; output power from the reference beam is used as a monitor for coupling variations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

αL = 10 log 10 I solvent I analyte
c min = 2 Lαη ( Δ F 0 F 0 ) 2 + ( σ j RF 0 exp ( AL ) ) 2
αL = 10 log 10 ( I sensor I ref ) solvent ( I sensor I ref ) analyte ( in dB )

Metrics