Abstract

We present a new method that provides precise detection of micro-object position with respect to a spatially periodic illumination field. Altering the mutual position of the object and the illumination field causes that a pattern of scattered light detected perpendicularly by a CCD camera changes. We present a procedure how to employ this pattern changes to track micrometer-size object in the standing wave and how to apply this method to optical tracking of Brownian particle even in periodic illumination field in motion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
    [CrossRef] [PubMed]
  2. C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003).
    [CrossRef] [PubMed]
  3. J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
    [CrossRef]
  4. P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002).
    [CrossRef]
  5. K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004).
    [CrossRef]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  7. J.-C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cress correlations between tow particles in an external potential," Phys. Rev. Lett. 82, 2211 (1999).
    [CrossRef]
  8. M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006).
    [CrossRef]
  9. A. Simon and A. Libchaber, "Escape and Synchronization of a Brownian particle," Phys. Rev. Lett. 68, 3375- 3378 (1992).
    [CrossRef] [PubMed]
  10. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
    [CrossRef] [PubMed]
  11. S.-H. Lee and D. G. Grier, "One-dimensional thermal ratchets," J. Phys.: Condens. Matter 17, S3685-S3695 (2005).
    [CrossRef]
  12. W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005).
    [CrossRef] [PubMed]
  13. J. Lippincott-Schwartz and G. H. Patterson, "Development and Use of Fluorescent Protein Markers in Living Cells," Science 300, 87-91 (2003).
    [CrossRef] [PubMed]
  14. M. Dahan, "From analog to digital: exploring cell dynamics with single quantum dots," Histochem. Cell Biol. 125, 451-456 (2006).
    [CrossRef]
  15. M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001).
    [CrossRef] [PubMed]
  16. R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002).
    [CrossRef] [PubMed]
  17. M. Speidel, A. Jonas, and E.-L. Florin, "Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging," Opt. Lett. 28, 69-71 (2003).
    [CrossRef] [PubMed]
  18. M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005).
    [CrossRef]
  19. M. J. Lang and S. M. Block, "Resource letter: LBOT-1: Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003).
    [CrossRef]
  20. I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
    [CrossRef]
  21. I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
    [CrossRef] [PubMed]
  22. M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
    [CrossRef] [PubMed]
  23. F. Gittes and C. F. Schmidt, "Interference model for back-focal plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998).
    [CrossRef]
  24. A. Rohrbach and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys. 91, 5474-5488 (2002).
    [CrossRef]
  25. M.-T. Wei and A. Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
    [CrossRef] [PubMed]
  26. W. Denk and W. W. Webb, "Optical measurment of picometer displacements of transparent microscopics objects," Appl. Opt. 29, 2382 (1990).
    [CrossRef] [PubMed]
  27. R. J. Oetama and J. Y. Walz, "A new approach for analyzing particle motion near an interface using total internal reflection microscopy," J. Colloid Interface Sci. 284, 323-331 (2005).
    [CrossRef] [PubMed]
  28. A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999).
    [CrossRef]
  29. A. R. Clapp and R. B. Dickinson, "Direct Measurement of Static and Dynamic Forces between a Colloidal Particle and a Flat Surface Using a Single-Beam Gradient Optical Trap and Evanescent Wave Light Scattering," Langmuir 17, 2182-2191 (2001).
    [CrossRef]
  30. D. Prieve, "Measurement of colloidal forces with TIRM," Advances in Colloid and Interface Science 82, 93-125 (1999).
    [CrossRef]
  31. T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).
  32. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).
  33. M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
    [CrossRef]
  34. R. C. Gonzalez and P. Wintz, Digital Image Processing (Addison-Wesley Publishing Company, Reading, 1987).
  35. P. Reimann, "Brownian Motors: noisy transport far from equilibrium," Physics Reports 361, 57-265 (2002).
    [CrossRef]
  36. T. Cizmar, "Optical traps generated by non-traditional beams," Ph.D. thesis, Masaryk University in Brno (2006).

2006

M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006).
[CrossRef]

M. Dahan, "From analog to digital: exploring cell dynamics with single quantum dots," Histochem. Cell Biol. 125, 451-456 (2006).
[CrossRef]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

2005

R. J. Oetama and J. Y. Walz, "A new approach for analyzing particle motion near an interface using total internal reflection microscopy," J. Colloid Interface Sci. 284, 323-331 (2005).
[CrossRef] [PubMed]

M.-T. Wei and A. Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005).
[CrossRef] [PubMed]

S.-H. Lee and D. G. Grier, "One-dimensional thermal ratchets," J. Phys.: Condens. Matter 17, S3685-S3695 (2005).
[CrossRef]

W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005).
[CrossRef] [PubMed]

M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005).
[CrossRef]

2004

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004).
[CrossRef]

2003

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003).
[CrossRef] [PubMed]

M. J. Lang and S. M. Block, "Resource letter: LBOT-1: Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

J. Lippincott-Schwartz and G. H. Patterson, "Development and Use of Fluorescent Protein Markers in Living Cells," Science 300, 87-91 (2003).
[CrossRef] [PubMed]

M. Speidel, A. Jonas, and E.-L. Florin, "Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging," Opt. Lett. 28, 69-71 (2003).
[CrossRef] [PubMed]

2002

P. Reimann, "Brownian Motors: noisy transport far from equilibrium," Physics Reports 361, 57-265 (2002).
[CrossRef]

A. Rohrbach and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys. 91, 5474-5488 (2002).
[CrossRef]

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002).
[CrossRef]

2001

M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001).
[CrossRef] [PubMed]

A. R. Clapp and R. B. Dickinson, "Direct Measurement of Static and Dynamic Forces between a Colloidal Particle and a Flat Surface Using a Single-Beam Gradient Optical Trap and Evanescent Wave Light Scattering," Langmuir 17, 2182-2191 (2001).
[CrossRef]

1999

D. Prieve, "Measurement of colloidal forces with TIRM," Advances in Colloid and Interface Science 82, 93-125 (1999).
[CrossRef]

A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999).
[CrossRef]

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

J.-C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cress correlations between tow particles in an external potential," Phys. Rev. Lett. 82, 2211 (1999).
[CrossRef]

1998

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

F. Gittes and C. F. Schmidt, "Interference model for back-focal plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998).
[CrossRef]

1996

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

1995

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

1992

A. Simon and A. Libchaber, "Escape and Synchronization of a Brownian particle," Phys. Rev. Lett. 68, 3375- 3378 (1992).
[CrossRef] [PubMed]

1990

Allersma, M. W.

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

Block, S. M.

M. J. Lang and S. M. Block, "Resource letter: LBOT-1: Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Bourdieu, L. S.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003).
[CrossRef] [PubMed]

Buckley, M.

M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005).
[CrossRef]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003).
[CrossRef] [PubMed]

Cheezum, M. K.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001).
[CrossRef] [PubMed]

Chiou, A.

Cizmar, T.

M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).

Clapp, A. R.

A. R. Clapp and R. B. Dickinson, "Direct Measurement of Static and Dynamic Forces between a Colloidal Particle and a Flat Surface Using a Single-Beam Gradient Optical Trap and Evanescent Wave Light Scattering," Langmuir 17, 2182-2191 (2001).
[CrossRef]

A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999).
[CrossRef]

Crocker, J. C.

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

Dahan, M.

M. Dahan, "From analog to digital: exploring cell dynamics with single quantum dots," Histochem. Cell Biol. 125, 451-456 (2006).
[CrossRef]

de Grooth, B. G.

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

deCastro, M. J.

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

Denk, W.

Dholakia, K.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).

Dickinson, R. B.

A. R. Clapp and R. B. Dickinson, "Direct Measurement of Static and Dynamic Forces between a Colloidal Particle and a Flat Surface Using a Single-Beam Gradient Optical Trap and Evanescent Wave Light Scattering," Langmuir 17, 2182-2191 (2001).
[CrossRef]

A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999).
[CrossRef]

Faucheux, L. P.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Figdor, C. G.

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

Garces-Chavez, V.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).

Gittes, F.

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

F. Gittes and C. F. Schmidt, "Interference model for back-focal plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998).
[CrossRef]

Greve, J.

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

Grier, D. G.

M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006).
[CrossRef]

S.-H. Lee and D. G. Grier, "One-dimensional thermal ratchets," J. Phys.: Condens. Matter 17, S3685-S3695 (2005).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004).
[CrossRef]

P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002).
[CrossRef]

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

Guilford, W. H.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001).
[CrossRef] [PubMed]

Kaplan, P. D.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004).
[CrossRef]

Korda, P. T.

P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002).
[CrossRef]

Ladavac, K.

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004).
[CrossRef]

Lang, M. J.

M. J. Lang and S. M. Block, "Resource letter: LBOT-1: Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

Lee, S.-H.

S.-H. Lee and D. G. Grier, "One-dimensional thermal ratchets," J. Phys.: Condens. Matter 17, S3685-S3695 (2005).
[CrossRef]

Libchaber, A.

A. Simon and A. Libchaber, "Escape and Synchronization of a Brownian particle," Phys. Rev. Lett. 68, 3375- 3378 (1992).
[CrossRef] [PubMed]

Libchaber, A. J.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

J. Lippincott-Schwartz and G. H. Patterson, "Development and Use of Fluorescent Protein Markers in Living Cells," Science 300, 87-91 (2003).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Meiners, J.-C.

J.-C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cress correlations between tow particles in an external potential," Phys. Rev. Lett. 82, 2211 (1999).
[CrossRef]

Oetama, R. J.

R. J. Oetama and J. Y. Walz, "A new approach for analyzing particle motion near an interface using total internal reflection microscopy," J. Colloid Interface Sci. 284, 323-331 (2005).
[CrossRef] [PubMed]

Parak, W. J.

W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005).
[CrossRef] [PubMed]

Patterson, G. H.

J. Lippincott-Schwartz and G. H. Patterson, "Development and Use of Fluorescent Protein Markers in Living Cells," Science 300, 87-91 (2003).
[CrossRef] [PubMed]

Pellegrino, T.

W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005).
[CrossRef] [PubMed]

Peters, I. M.

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

Plank, C.

W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005).
[CrossRef] [PubMed]

Polin, M.

M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006).
[CrossRef]

Prieve, D.

D. Prieve, "Measurement of colloidal forces with TIRM," Advances in Colloid and Interface Science 82, 93-125 (1999).
[CrossRef]

Quake, S. R.

M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006).
[CrossRef]

J.-C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cress correlations between tow particles in an external potential," Phys. Rev. Lett. 82, 2211 (1999).
[CrossRef]

Reimann, P.

P. Reimann, "Brownian Motors: noisy transport far from equilibrium," Physics Reports 361, 57-265 (2002).
[CrossRef]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Roberts, J. W.

M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005).
[CrossRef]

Rohrbach, A.

A. Rohrbach and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys. 91, 5474-5488 (2002).
[CrossRef]

Ruta, A. G.

A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999).
[CrossRef]

Schins, J. M.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

Schmidt, C. F.

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

F. Gittes and C. F. Schmidt, "Interference model for back-focal plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998).
[CrossRef]

Sery, M.

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

Siler, M.

M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Simon, A.

A. Simon and A. Libchaber, "Escape and Synchronization of a Brownian particle," Phys. Rev. Lett. 68, 3375- 3378 (1992).
[CrossRef] [PubMed]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002).
[CrossRef]

Speidel, M.

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Rohrbach and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys. 91, 5474-5488 (2002).
[CrossRef]

Stewart, R. J.

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

van Kooyk, Y.

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

van Vliet, S. J.

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

Walker, W. F.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001).
[CrossRef] [PubMed]

Walz, J. Y.

R. J. Oetama and J. Y. Walz, "A new approach for analyzing particle motion near an interface using total internal reflection microscopy," J. Colloid Interface Sci. 284, 323-331 (2005).
[CrossRef] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

W. Denk and W. W. Webb, "Optical measurment of picometer displacements of transparent microscopics objects," Appl. Opt. 29, 2382 (1990).
[CrossRef] [PubMed]

Wei, M.-T.

Wu, M.

M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005).
[CrossRef]

Zemanek, P.

M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).

Advances in Colloid and Interface Science

D. Prieve, "Measurement of colloidal forces with TIRM," Advances in Colloid and Interface Science 82, 93-125 (1999).
[CrossRef]

Am. J. Phys.

M. J. Lang and S. M. Block, "Resource letter: LBOT-1: Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

Biophys. J.

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998).
[CrossRef] [PubMed]

M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002).
[CrossRef] [PubMed]

Cytometry

I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999).
[CrossRef] [PubMed]

Exp. Fluids

M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005).
[CrossRef]

Histochem. Cell Biol.

M. Dahan, "From analog to digital: exploring cell dynamics with single quantum dots," Histochem. Cell Biol. 125, 451-456 (2006).
[CrossRef]

J. Appl. Phys.

A. Rohrbach and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys. 91, 5474-5488 (2002).
[CrossRef]

J. Colloid Interface Sci.

R. J. Oetama and J. Y. Walz, "A new approach for analyzing particle motion near an interface using total internal reflection microscopy," J. Colloid Interface Sci. 284, 323-331 (2005).
[CrossRef] [PubMed]

J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996).
[CrossRef]

J. Phys.: Condens. Matter

S.-H. Lee and D. G. Grier, "One-dimensional thermal ratchets," J. Phys.: Condens. Matter 17, S3685-S3695 (2005).
[CrossRef]

Langmuir

A. R. Clapp and R. B. Dickinson, "Direct Measurement of Static and Dynamic Forces between a Colloidal Particle and a Flat Surface Using a Single-Beam Gradient Optical Trap and Evanescent Wave Light Scattering," Langmuir 17, 2182-2191 (2001).
[CrossRef]

Nanotechnology

W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005).
[CrossRef] [PubMed]

Nature

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).

P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002).
[CrossRef]

Phys. Rev. E

K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004).
[CrossRef]

Phys. Rev. Lett.

J.-C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cress correlations between tow particles in an external potential," Phys. Rev. Lett. 82, 2211 (1999).
[CrossRef]

M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006).
[CrossRef]

A. Simon and A. Libchaber, "Escape and Synchronization of a Brownian particle," Phys. Rev. Lett. 68, 3375- 3378 (1992).
[CrossRef] [PubMed]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995).
[CrossRef] [PubMed]

Physics Reports

P. Reimann, "Brownian Motors: noisy transport far from equilibrium," Physics Reports 361, 57-265 (2002).
[CrossRef]

Rev. Sci. Instrum.

I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998).
[CrossRef]

A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999).
[CrossRef]

Science

J. Lippincott-Schwartz and G. H. Patterson, "Development and Use of Fluorescent Protein Markers in Living Cells," Science 300, 87-91 (2003).
[CrossRef] [PubMed]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999).
[CrossRef] [PubMed]

Other

T. Cizmar, "Optical traps generated by non-traditional beams," Ph.D. thesis, Masaryk University in Brno (2006).

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).

R. C. Gonzalez and P. Wintz, Digital Image Processing (Addison-Wesley Publishing Company, Reading, 1987).

Supplementary Material (1)

» Media 1: MOV (2303 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Configuration of the particle tracking method using spatially periodic field illumination - here it is made by two counter-propagating evanescent waves. The movie shows 3 different cases of field and particle motion. The first part shows a case when the field is static and the particle moves along the surface alternatively in the direction of standing wave periodicity. This part demonstrates how the CCD pattern changes its position and shape. Second part of the movie shows also a particle moving in the static field but for the case of Brownian motion. Third part shows a case when the static particle is illuminated by the moving standing wave. In this case the pattern changes its shape but not the position. [Media 1]

Fig. 2.
Fig. 2.

Patterns of an object illuminated by a spatially periodic field (evanescent standing wave) and seen by a CCD camera. The presented five images were taken by high-speed CCD camera (IDT X-Stream XS3,4 GB, framerate 6120 fps, integration time 2 μs) during fast sweep of standing wave over the particle (polystyrene, diameter 1.070 μm). This set of images corresponds to the movement of the standing wave over its one period (200 nm).

Fig. 3.
Fig. 3.

Reconstructed functions I off, I amp and Ψ for CCD area of 100×100 pixels. These function were obtained using 30 frames of the record described in Fig. 2.

Fig. 4.
Fig. 4.

Object trajectories along z̄ and x̄ directions obtained from analyzes of the CCD camera images for the same configuration and particle properties as in Fig. 2. During the recording the standing wave was stationary and so the curves show the Brownian motion of the particle in xz̄ plane.

Fig. 5.
Fig. 5.

Dependence of particle position with respect to the periodic illumination field extended out of the interval of single period of the illuminating field (zΨ ) on the position of the interference pattern on the CCD camera (z). The slope of the linear fit gives the calibration constant between the CCD pixels and micrometers if the standing wave is stationary.

Fig. 6.
Fig. 6.

Time record of the quantity Δz = zΨ - z. Low frequency vibration of the CCD camera with respect to the illumination field is clearly visible.

Fig. 7.
Fig. 7.

The power spectral density for Δz record. The blue-plotted data corresponds to the range which is influenced by the setup instability, the red part shows the range which can be associated with the Gaussian white noise caused by the method inaccuracy. The reason why the boundary is chosen at the frequency of 2000 Hz is discussed in the text below.

Fig. 8.
Fig. 8.

The normalized histogram of PSD Δz corresponding to the red-plotted part of Fig. 7.

Fig. 9.
Fig. 9.

The value of σΔz (fb ) determined from the fit to the power spectral density histogram presented in Fig. 7 (for 50 bins) for each boundary frequency fb .

Fig. 10.
Fig. 10.

The comparison of power spectral density PSDσΔz and the power spectral density of the generated Gaussian-distributed white noise for the determined value of σΔz

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I CCD α β z Ψ I off α β + I amp α β cos [ 2 k z Ψ + Ψ α β ] ,
F A B = FT [ I CCD α β z Ψ ] ,
I CCD α x β z z Ψ = IFT [ F A B e 2 π i ( Ax + Bz ) ] ,
K x z z Ψ = α , β I exp α β I CCD α x β z z Ψ 2 ,
E x ¯ y ¯ z ¯ t = E 1 x ¯ y ¯ exp [ i k z ¯ i ω t ] + E 2 x ¯ y ¯ exp [ i k z ¯ + 2 i z ψ i ω t ]
= exp ( i ω t ) [ E 1 x ¯ y ¯ exp ( i k z ¯ ) + exp ( 2 i k z ψ ) E 2 ( x ¯ , y ¯ ) exp ( i k z ¯ ) ]
d E CCD ( α , β , t ) = f ( x ¯ , y ¯ , z ¯ , α , β ) E ( x ¯ , y ¯ , z ¯ , t ) d x ¯ d y ¯ d z ¯ .
E CCD ( α , β , t ) = scatterer f ( x ̅ , y ̅ , z ̅ , α , β ) E ( x ̅ , y ̅ , z ̅ , t ) d x ̅ d y ̅ d z ̅
= exp ( iωt ) [ scatterer f ( x ̅ , y ̅ , z ̅ , α , β ) E 1 ( x ̅ , y ̅ ) exp ( ikz ) d x ̅ d y ̅ d z ̅
+ exp ( 2 ikz ψ ) scatterer f ( x ̅ , y ̅ , z ̅ , α , β ) E 2 ( x ̅ , y ̅ ) exp ( ik z ̅ ) d x ̅ d y ̅ d z ̅
F 1 ( α , β ) = F 1 ( α , β ) exp [ i ψ 1 ( α , β ) ] ,
F 2 ( α , β ) = F 2 ( α , β ) exp [ i ψ 2 ( α , β ) ] ,
E CCD ( α , β , t ) = exp ( iωt ) [ F 1 ( α , β ) + exp ( 2 ikz ψ ) F 2 ( α , β ) ] .
I CCD ( α , β , z ψ ) = 1 2 0 E CCD ( α , β , t ) E CCD ( α , β , t ) * ,
I off ( α , β ) + I amp ( α , β ) cos [ 2 kz ψ + ψ ( α , β ) ] .
I off ( α , β ) = 1 2 0 [ F 1 ( α , β ) 2 + F 2 ( α , β ) 2 ] ,
I amp ( α , β ) = 0 F 1 ( α , β ) F 2 ( α , β ) ,
ψ ( α , β ) = ψ 2 ( α , β ) ψ 1 ( α , β ) .
PSD Δ z = DFT [ Δ z ] 2 N ,
p ( PSD Δ z ) = 1 σ Δ z 2 ( PSD Δ z σ Δ z 2 ) .

Metrics