Abstract

Wavelength multiplexed holographic bit oriented memories are serious competitors for high capacity data storage systems. For data recording, two interfering beams are required whereas one of them should be blocked for readout in previously proposed systems. This makes the system complex. To circumvent this difficulty and make the device simpler, we validated an architecture for such memories in which the same two beams are used for recording and reading out. This balanced homodyne scheme is validated by recording holograms in a Lippmann architecture.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer, Series in Optical Sciences (Springer-Verlag, 2000).
  2. G. J. Steckman, A. Pu, D. Psaltis, "Storage density of shift-multiplexed holographic memory," Appl. Opt. 40, 3387-3394 (2001).
    [CrossRef]
  3. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity Holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  4. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004).
    [CrossRef] [PubMed]
  5. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, "An optically accessed memory using the Lippmann process for information storage," Optical and Electro-Optical Information Processing (MIT Press, 1965).
  6. S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001).
    [CrossRef]
  7. A. Labeyrie, J. P. Huignard, and B. Loiseaux, "Optical data storage in microfibers," Opt. Lett. 23, 301-303 (1998).
    [CrossRef]
  8. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005).
    [CrossRef] [PubMed]
  9. I. Sh. Steinberg, "Multilayer recording of the microholograms in lithium niobate," in Photorefractive Effects, Materials and Devices, Vol. 99 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), 610-615.
  10. M. Dubois, X. Shi, C. Erben, K.-L. Longley, E.-P. Boden, and B.-L. Lawrence, "Characterization of microholograms recorded in a thermoplastic medium for three-dimensional optical data storage," Opt. Lett. 30, 1947-949 (2005).
    [CrossRef] [PubMed]
  11. G. Maire, G. Pauliat, and G. Roosen, "Homodyne detection readout for bit-oriented holographic memories," Opt. Lett. 31, 175-177 (2006).
    [CrossRef] [PubMed]
  12. J.-J. Yang and M.-R. Wang, "White light micrograting multiplexing for high density data storage," Opt. Lett. 31, 1304-1306 (2006).
    [CrossRef] [PubMed]
  13. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
    [CrossRef]
  14. A. Murciano, S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Holographic reflection gratings in photopolymerizable solgel material," Opt. Lett. 31, 2317-2319 (2006).
    [CrossRef] [PubMed]
  15. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
    [CrossRef]
  16. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  17. J. Shamir, "Paradigms for bit-oriented holographic information storage," Appl. Opt. 45, 5212-5222 (2006).
    [CrossRef] [PubMed]

2006 (5)

2005 (2)

2004 (2)

2001 (2)

S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001).
[CrossRef]

G. J. Steckman, A. Pu, D. Psaltis, "Storage density of shift-multiplexed holographic memory," Appl. Opt. 40, 3387-3394 (2001).
[CrossRef]

1998 (1)

1996 (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Anderson, K.

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Bjornson, E.

Blaya, S.

Boden, E.-P.

Carretero, L.

Curtis, K.

Daiber, A. J.

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Dubois, M.

Eichler, H.-J.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001).
[CrossRef]

Erben, C.

Fimia, A.

Frohmann, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Hesselink, L.

Howard, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Huignard, J. P.

Jallapuram, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kwan, D.

Labeyrie, A.

Lawrence, B.-L.

Loiseaux, B.

Longley, K.-L.

Madrigal, R. F.

Maire, G.

Martin, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Murciano, A.

Naydenova, I.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Okas, R.

Orlic, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001).
[CrossRef]

Orlov, S. S.

Pauliat, G.

Phillips, W.

Psaltis, D.

Pu, A.

Robertson, T. L.

Roosen, G.

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Shamir, J.

Shi, X.

Slagle, T.

Snyder, R.

Sochava, S. L.

Steckman, G. J.

Sundaram, P.

Takashima, Y.

Toal, V.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Ulm, S.

S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001).
[CrossRef]

Wang, M.-R.

Yang, J.-J.

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Opt. A: Pure Appl. Opt. (1)

S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (1)

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Phys. Rev. E (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996).
[CrossRef]

Other (3)

I. Sh. Steinberg, "Multilayer recording of the microholograms in lithium niobate," in Photorefractive Effects, Materials and Devices, Vol. 99 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), 610-615.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer, Series in Optical Sciences (Springer-Verlag, 2000).

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, "An optically accessed memory using the Lippmann process for information storage," Optical and Electro-Optical Information Processing (MIT Press, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of balanced homodyne detection. PD1 and PD2 are two photodiodes providing the two homodyne signals, which are subtracted to get the balanced signal.

Fig. 2.
Fig. 2.

Scheme of the experimental set-up used to validate the balanced homodyne detection. BS are beam splitters, PD1 and PD2 photodiodes.

Fig. 3.
Fig. 3.

Structure of the Lippmann structure. The pre- and post-exposures and the hologram readout are achieved by sending the beam from the rear-side, while the hologram recording is made from the front-side.

Fig. 4.
Fig. 4.

Experimental (oscillating line) signal transmitted by the hologram-mirror structure, versus the refraction angle. This curve is obtained by rotation of the Lippmann sample along the y axis (see Fig. 2). The black solid line is the theoretical fit (see text).

Fig. 5.
Fig. 5.

Signals detected by scanning the piezoelectric translation stage along the x and y axes: a) homodyne transmitted signal; b) homodyne reflected signal; c) balanced signal. The left images are obtained with the diode at the wavelength of 475 nm used for hologram recording, and the right images with the diode at the wavelength of 473 nm, i.e. 2 nm below the wavelength used for recording.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ S R = α R I S T = β T I
R = R 0 + Δ R and T = T 0 Δ R
S balanced = α R 0 S T β T 0 S R = β α I Δ R

Metrics