Abstract

The coupling properties of multi-core fibers are analyzed using the multipole method and coupled mode theory in order to gain insights into the performance of image fibers that are commonly used in flexible endoscopes. It is explained that coherent fiber bundles with high core density are able to transport images because nonuniformity in the pixel size reduces the inter-core coupling that causes crosstalk. The wavelength, average core size and separation, and degree of core size variation determine the strength of coupling between adjacent cores, such that fibers with a smaller core size and separation at longer wavelengths require more nonuniformity in order for reliable image transmission. Guidelines are given for assessing the performance of image fibers in a particular system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Let. 18, 565 (1993).
    [CrossRef]
  2. A. F. Gmitro, A. R. Rouse, and A. Kano, "In vivo fluorescence confocal microendoscopy," in Biomedical Imaging, 2002. Proceedings 2002 IEEE International Symposium on, pp. 277-280, (2002).
  3. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, "Slit-scanning Confocal Microendoscope for high resolution in Vivo Imaging," Appl. Opt. 38, 7133-7144 (1999).
    [CrossRef]
  4. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
    [CrossRef]
  5. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
    [CrossRef]
  6. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
    [CrossRef] [PubMed]
  7. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
    [CrossRef] [PubMed]
  8. R. Juskaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
    [CrossRef]
  9. G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
    [CrossRef]
  10. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
    [CrossRef] [PubMed]
  11. Y. Li, T. Wang, H. Kosaka, and S. K. Kasahara, "Fiber-image-guide-based bit-parallel optical interconnects," Appl. Opt. 35, 6920-6933 (1996).
    [CrossRef] [PubMed]
  12. H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
    [CrossRef]
  13. R. K. Kostuk and J. Carriere, "Interconnect characteristics of fiber image guides," Appl. Opt. 40, 2428-2434 (2001).
    [CrossRef]
  14. C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
    [CrossRef] [PubMed]
  15. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, "Fiber-optic-bundle-based optical coherence tomography," Opt. Lett. 30, 1803-1805 (2005).
    [CrossRef] [PubMed]
  16. A. Komiyama and M. Hashimoto, "A new class of crosstalk in image fibers," Opt. Commun. 107, 49-53 (1994).
    [CrossRef]
  17. M. Nakamura, T. Otsubo, and K. Kitayama, "Skew characteristics of image fiber for high-speed 2-D parallel optical data link," J. Lightwave Technol. 18, 1214-1219 (2000).
    [CrossRef]
  18. R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
    [CrossRef]
  19. K. Nishioka, K. Ono, and M. Shiraiwa, "Image Fiber," in www.freepatentsonline.com (Olympus Optical Co., Ltd., Tokyo, Japan, USA, 1995).
  20. K. Ono, M. Shiraiwa, and K. Nishioka, "Image fiber and method of fabricating the same," in www.freepatentsonline.com (Olympus Optical Co., Ltd., Tokyo, Japan, USA, 2000).
  21. S. Kumar, U. H. Manyam, and V. Srikant, "Optical fibers having cores with different propagation constants, and methods of manufacturing same," in www.freepatentsonline.com (Corning Incorporated, Corning, NY, USA, 2003).
  22. K. L. Reichenbach and C. Xu, "Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities," Opt. Express 13, 10336-10348 (2005).
    [CrossRef] [PubMed]
  23. K. L. Reichenbach and C. Xu, "The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers," Opt. Express 13, 2799-2807 (2005).
    [CrossRef] [PubMed]
  24. S. L. Chuang, Physics of Optoelectronics Devices (Wiley-Interscience, 1995).
  25. A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am. A 62, 1267 (1972).
    [CrossRef]
  26. S.-L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol. 5, 174-183 (1987).
    [CrossRef]
  27. A. W. Snyder and A. Ankiewicz, "Optical fiber couplers-optimum solution for unequal cores," J. Lightwave Technol. 6, 463-474 (1988).
    [CrossRef]
  28. H. A. Haus, W.-P. Huang, and A. W. Snyder, "Coupled-mode formulations," Opt. Lett. 14, 1222 (1989).
    [CrossRef] [PubMed]
  29. W.-P. Huang, "Coupled-mode theory for couple optical wavedguides: an overview," J. Opt. Soc. Am A 11, 963- (1994).
    [CrossRef]
  30. E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron 22, 988-993 (1986).
    [CrossRef]
  31. A. Snyder and J. Love, Optical Waveguide Theory (Kluwer, London, 1983).
  32. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, Inc., New York, 1997).
  33. A. Komiyama, "Localization of mode waves in a disordered multi-waveguide system," Opt. Commun. 151, 25-30 (1998).
    [CrossRef]
  34. A. Kumar, R. K. Varshney, and K. Thyagarajan, "Birefringence calculations in elliptical-core optical fibres," Electron. Lett. 20, 112-113 (1984).
    [CrossRef]
  35. R. Dyott, J. Cozens, and D. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
    [CrossRef]
  36. K. Okamoto, T. Hosaka, and Y. Sasaki, "Linearly single polarization fibers with zero polarization mode dispersion," IEEE J. Quantum Electron. 18, 496-503 (1982).
    [CrossRef]
  37. K. L. Reichenbach and C. Xu have submitted for publication a manuscript entitled "Analysis and measurement of light propagation in coherent fiber bundles".

2005 (3)

2004 (3)

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
[CrossRef] [PubMed]

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

2002 (2)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
[CrossRef] [PubMed]

2001 (2)

R. K. Kostuk and J. Carriere, "Interconnect characteristics of fiber image guides," Appl. Opt. 40, 2428-2434 (2001).
[CrossRef]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (1)

A. Komiyama, "Localization of mode waves in a disordered multi-waveguide system," Opt. Commun. 151, 25-30 (1998).
[CrossRef]

1997 (2)

R. Juskaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
[CrossRef]

H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
[CrossRef]

1996 (2)

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, and S. K. Kasahara, "Fiber-image-guide-based bit-parallel optical interconnects," Appl. Opt. 35, 6920-6933 (1996).
[CrossRef] [PubMed]

1994 (1)

A. Komiyama and M. Hashimoto, "A new class of crosstalk in image fibers," Opt. Commun. 107, 49-53 (1994).
[CrossRef]

1993 (1)

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Let. 18, 565 (1993).
[CrossRef]

1989 (1)

1988 (1)

A. W. Snyder and A. Ankiewicz, "Optical fiber couplers-optimum solution for unequal cores," J. Lightwave Technol. 6, 463-474 (1988).
[CrossRef]

1987 (1)

S.-L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol. 5, 174-183 (1987).
[CrossRef]

1986 (1)

E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron 22, 988-993 (1986).
[CrossRef]

1984 (1)

A. Kumar, R. K. Varshney, and K. Thyagarajan, "Birefringence calculations in elliptical-core optical fibres," Electron. Lett. 20, 112-113 (1984).
[CrossRef]

1982 (1)

K. Okamoto, T. Hosaka, and Y. Sasaki, "Linearly single polarization fibers with zero polarization mode dispersion," IEEE J. Quantum Electron. 18, 496-503 (1982).
[CrossRef]

1979 (1)

R. Dyott, J. Cozens, and D. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

1972 (1)

A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am. A 62, 1267 (1972).
[CrossRef]

Abrat, B.

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Amatore, C.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Ankiewicz, A.

A. W. Snyder and A. Ankiewicz, "Optical fiber couplers-optimum solution for unequal cores," J. Lightwave Technol. 6, 463-474 (1988).
[CrossRef]

Ayache, N.

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Aziz, D.

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Let. 18, 565 (1993).
[CrossRef]

Berier, F.

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Brenner, M.

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Carriere, J.

Cavé, C.

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Chen, Z.

Chovin, A.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Chuang, S.-L.

S.-L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol. 5, 174-183 (1987).
[CrossRef]

Collier, T.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

Conde, R.

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Cozens, J.

R. Dyott, J. Cozens, and D. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

Depeursinge, C.

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Descour, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

Donaldson, L.

Dubaj, V.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
[CrossRef] [PubMed]

Dyott, R.

R. Dyott, J. Cozens, and D. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

Follen, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

Garrigue, P.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Genet, M.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Gisin, B.

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Gisin, N.

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Gmitro, A. F.

Göbel, W.

Goualher, G. L.

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Groebli, B.

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Guo, S.

Harris, M.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
[CrossRef] [PubMed]

Hashimoto, M.

A. Komiyama and M. Hashimoto, "A new class of crosstalk in image fibers," Opt. Commun. 107, 49-53 (1994).
[CrossRef]

Haus, H. A.

Helmchen, F.

Hopkins, M. F.

Hosaka, T.

K. Okamoto, T. Hosaka, and Y. Sasaki, "Linearly single polarization fibers with zero polarization mode dispersion," IEEE J. Quantum Electron. 18, 496-503 (1982).
[CrossRef]

Huang, W.-P.

H. A. Haus, W.-P. Huang, and A. W. Snyder, "Coupled-mode formulations," Opt. Lett. 14, 1222 (1989).
[CrossRef] [PubMed]

W.-P. Huang, "Coupled-mode theory for couple optical wavedguides: an overview," J. Opt. Soc. Am A 11, 963- (1994).
[CrossRef]

Juskaitis, R.

R. Juskaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
[CrossRef]

Kajita, M.

H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
[CrossRef]

Kasahara, S. K.

Kerr, J. N. D.

Kitayama, K.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Komiyama, A.

A. Komiyama, "Localization of mode waves in a disordered multi-waveguide system," Opt. Commun. 151, 25-30 (1998).
[CrossRef]

A. Komiyama and M. Hashimoto, "A new class of crosstalk in image fibers," Opt. Commun. 107, 49-53 (1994).
[CrossRef]

Kosaka, H.

H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, and S. K. Kasahara, "Fiber-image-guide-based bit-parallel optical interconnects," Appl. Opt. 35, 6920-6933 (1996).
[CrossRef] [PubMed]

Kostuk, R. K.

Kumar, A.

A. Kumar, R. K. Varshney, and K. Thyagarajan, "Birefringence calculations in elliptical-core optical fibres," Electron. Lett. 20, 112-113 (1984).
[CrossRef]

Laemmel, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

Le Gargasson, J-F.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

Le Goualher, G.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

Li, Y.

H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, and S. K. Kasahara, "Fiber-image-guide-based bit-parallel optical interconnects," Appl. Opt. 35, 6920-6933 (1996).
[CrossRef] [PubMed]

Liang, C.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

Marcatili, E.

E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron 22, 988-993 (1986).
[CrossRef]

Mazzolini, A.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
[CrossRef] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Morris, D.

R. Dyott, J. Cozens, and D. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

Mukai, D.

Nakamura, M.

Nimmerjahn, A.

Okamoto, K.

K. Okamoto, T. Hosaka, and Y. Sasaki, "Linearly single polarization fibers with zero polarization mode dispersion," IEEE J. Quantum Electron. 18, 496-503 (1982).
[CrossRef]

Otsubo, T.

Perchant, A.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Reichenbach, K. L.

Richards-Kortum, R.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

Rouse, A. R.

Sabharwal, Y. S.

Sasaki, Y.

K. Okamoto, T. Hosaka, and Y. Sasaki, "Linearly single polarization fibers with zero polarization mode dispersion," IEEE J. Quantum Electron. 18, 496-503 (1982).
[CrossRef]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Servant, L.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Snyder, A. W.

H. A. Haus, W.-P. Huang, and A. W. Snyder, "Coupled-mode formulations," Opt. Lett. 14, 1222 (1989).
[CrossRef] [PubMed]

A. W. Snyder and A. Ankiewicz, "Optical fiber couplers-optimum solution for unequal cores," J. Lightwave Technol. 6, 463-474 (1988).
[CrossRef]

A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am. A 62, 1267 (1972).
[CrossRef]

Sojic, N.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Sugimoto, Y.

H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
[CrossRef]

Sung, K.-B.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

Szunerits, S.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Thouin, L.

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Thyagarajan, K.

A. Kumar, R. K. Varshney, and K. Thyagarajan, "Birefringence calculations in elliptical-core optical fibres," Electron. Lett. 20, 112-113 (1984).
[CrossRef]

Varshney, R. K.

A. Kumar, R. K. Varshney, and K. Thyagarajan, "Birefringence calculations in elliptical-core optical fibres," Electron. Lett. 20, 112-113 (1984).
[CrossRef]

Vicaut, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

Viellerobe, B.

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

Wang, T.

Watson, T. F.

R. Juskaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
[CrossRef]

Wilson, T.

R. Juskaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
[CrossRef]

Wood, A.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
[CrossRef] [PubMed]

Xie, T.

Xu, C.

Anal. Chem. (1)

C. Amatore, A. Chovin, P. Garrigue, L. Servant, N. Sojic, S. Szunerits, and L. Thouin, "Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle," Anal. Chem. 76, 7202-7210 (2004).
[CrossRef] [PubMed]

Appl. Opt. (3)

Electron. Lett. (2)

A. Kumar, R. K. Varshney, and K. Thyagarajan, "Birefringence calculations in elliptical-core optical fibres," Electron. Lett. 20, 112-113 (1984).
[CrossRef]

R. Dyott, J. Cozens, and D. Morris, "Preservation of polarization in optical-fiber waveguides with elliptical cores," Electron. Lett. 15, 380-382 (1979).
[CrossRef]

IEEE J. Quantum Electron (1)

E. Marcatili, "Improved coupled-mode equations for dielectric guides," IEEE J. Quantum Electron 22, 988-993 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, and Y. Sasaki, "Linearly single polarization fibers with zero polarization mode dispersion," IEEE J. Quantum Electron. 18, 496-503 (1982).
[CrossRef]

IEEE Transactions on (1)

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," Biomedical Engineering, IEEE Transactions on 49, 1168-1172 (2002).
[CrossRef]

J. Lightwave Technol. (3)

M. Nakamura, T. Otsubo, and K. Kitayama, "Skew characteristics of image fiber for high-speed 2-D parallel optical data link," J. Lightwave Technol. 18, 1214-1219 (2000).
[CrossRef]

S.-L. Chuang, "A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation," J. Lightwave Technol. 5, 174-183 (1987).
[CrossRef]

A. W. Snyder and A. Ankiewicz, "Optical fiber couplers-optimum solution for unequal cores," J. Lightwave Technol. 6, 463-474 (1988).
[CrossRef]

J. Microsc. (1)

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

A. W. Snyder, "Coupled-Mode Theory for Optical Fibers," J. Opt. Soc. Am. A 62, 1267 (1972).
[CrossRef]

J. Vasc. Res. (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J-F. Le Gargasson, and E. Vicaut, "Fibered Confocal Fluorescence Microscopy (Cell-viZio) facilitates extended imaging in the field of Microcirculation," J. Vasc. Res. 41, 400-411 (2004).
[CrossRef] [PubMed]

Opt. Commun. (3)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

A. Komiyama and M. Hashimoto, "A new class of crosstalk in image fibers," Opt. Commun. 107, 49-53 (1994).
[CrossRef]

A. Komiyama, "Localization of mode waves in a disordered multi-waveguide system," Opt. Commun. 151, 25-30 (1998).
[CrossRef]

Opt. Express (2)

Opt. Let. (1)

A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Let. 18, 565 (1993).
[CrossRef]

Opt. Lett. (3)

Photon. Technol. Lett. (1)

H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, "A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber," Photon. Technol. Lett. 9, 253-255 (1997).
[CrossRef]

Pure Appl. Opt. (1)

R. Conde, C. Depeursinge, B. Gisin, N. Gisin, and B. Groebli, "Refractive index profile and geometry measurements in multicore fibres," Pure Appl. Opt. 5, 269-274 (1996).
[CrossRef]

Scanning (1)

R. Juskaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
[CrossRef]

Other (10)

G. L. Goualher, A. Perchant, M. Genet, C. Cavé, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache, "Towards optical biopsies with an integrated fibered Confocal Fluorescence Microscope," Lecture notes in Computer Science 3217, 761-768 (2004).
[CrossRef]

A. F. Gmitro, A. R. Rouse, and A. Kano, "In vivo fluorescence confocal microendoscopy," in Biomedical Imaging, 2002. Proceedings 2002 IEEE International Symposium on, pp. 277-280, (2002).

K. Nishioka, K. Ono, and M. Shiraiwa, "Image Fiber," in www.freepatentsonline.com (Olympus Optical Co., Ltd., Tokyo, Japan, USA, 1995).

K. Ono, M. Shiraiwa, and K. Nishioka, "Image fiber and method of fabricating the same," in www.freepatentsonline.com (Olympus Optical Co., Ltd., Tokyo, Japan, USA, 2000).

S. Kumar, U. H. Manyam, and V. Srikant, "Optical fibers having cores with different propagation constants, and methods of manufacturing same," in www.freepatentsonline.com (Corning Incorporated, Corning, NY, USA, 2003).

W.-P. Huang, "Coupled-mode theory for couple optical wavedguides: an overview," J. Opt. Soc. Am A 11, 963- (1994).
[CrossRef]

S. L. Chuang, Physics of Optoelectronics Devices (Wiley-Interscience, 1995).

A. Snyder and J. Love, Optical Waveguide Theory (Kluwer, London, 1983).

A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, Inc., New York, 1997).

K. L. Reichenbach and C. Xu have submitted for publication a manuscript entitled "Analysis and measurement of light propagation in coherent fiber bundles".

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

SEM images of an image fiber showing the irregularity of pixel size and shape.

Fig. 2.
Fig. 2.

The normalized power in each core of a two-core fiber is plotted as a function of the propagation distance. The two cores have identical diameters. a) FIGH-10-500N, Lc = 0.25 m; b) FIGH-10-350S, Lc = 1.39 cm. λ = 600 nm.

Fig. 3.
Fig. 3.

The power in each core of a seven-core FIGH-10-350S fiber when the input is in the central core, λ = 600 nm. The three unique energy distributions of the fourteen fundamental modes of the sevencore fiber are shown on the right, along with an illustration of the fiber endface.

Fig. 4.
Fig. 4.

The normalized power is plotted versus propagation distance for a FIGH-10-350S two-core fiber with a percentage variation of 1%. λ = 600 nm. The difference in the diameters of the two cores is 16 nm.

Fig. 5.
Fig. 5.

The average efficiency for data sets of 99 two-core fibers is plotted versus the percentage variation for a) FIGH-10-350S and b) FIGH-10-500N at three different wavelengths. The lines have been added to more clearly show the trends in the data. Note that the horizontal scales differ.

Fig. 6.
Fig. 6.

Power in a seven-core system when a) one of the outer cores has a similar radius to the central core and when b) and c) two outer cores have a similar diameter to the central core. The insets illustrate which cores are active in the coupling.

Fig. 7.
Fig. 7.

The average coupling efficiency of the central core is plotted versus the percentage variation for λ = 600nm. Each marker represents an average over thirty structures and the fiber dimensions are those of FIGH-10-350S.

Fig. 8.
Fig. 8.

The coupling efficiency a),c) and the coupling length b),d) are plotted versus the difference in diameters of the two cores for two fiber types FIGH-10-350S a),b) and FIGH-10-500N c),d). For a percentage variation of 2%, the Δd for a two-core fiber at the standard deviation of the distribution would be 0.04 μm for FIGH-10-350S and 0.058 μm for FIGH-10-500N.

Fig. 9.
Fig. 9.

The coupling efficiency, a), and the coupling length, b), for the outer cores of a seven-core system plotted versus the difference between the diameter of an outer core and that of the central core. λ = 600 nm and fiber dimensions match those of FIGH-10-350S. Only fibers with a percentage variation up to 4% are included.

Fig. 10.
Fig. 10.

Data from Fig. 8(c) and 8(d) replotted and fitted from Eq. (8) for fiber FIGH-10-500N. The coupling efficiency is plotted in a) while the coupling length is plotted in b).

Fig. 11.
Fig. 11.

Kab Kba is plotted with a solid line and Δβ 2/4, as defined in the text, is represented by non-solid lines for different Δd. The dotted lines are for a diameter difference of 1%, the dashed 4%, and dot-dashed 10%. Fiber FIGH-10-350S is shown in (a) while FIGH-10-500N is in (b). When the wavelength and value for Δβ fall in the gray shaded region, the two cores will have less than 1.67% coupling efficiency.

Fig.12.
Fig.12.

The decoupled modes of a seven-core system with a percentage variation in core diameters of 4% and dimensions of FIGH-10-350S, λ = 600 nm.

Tables (3)

Tables Icon

Table 1. Image fiber specifications.

Tables Icon

Table 2. Values for Kab Kba based on the fits of data in Fig. 8, solved for from the parameter a.

Tables Icon

Table 3. Pixel accuracy based on 10% variation in pixel diameter.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L c = π β e β o = λ 2 ( n eff e n eff o )
E x y z = a ( z ) e a x y + b ( z ) e b x y
H x y z = a ( z ) h a x y + b ( z ) h b x y
P ( z ) = a ( z ) 2 + b ( z ) 2 + Re [ a ( z ) b * ( z ) C ab + b ( z ) a * ( z ) C ba ]
C ab = 1 2 e a ( x , y ) × h * b x y · z ̂ dxdy
d dz a ( z ) = i β a a ( z ) + iK ab b ( z )
d dz b ( z ) = i K ba a ( z ) + b b ( z )
P a ( z ) = a ( z ) 2 = 1 F 2 sin 2 β d z
P b ( z ) = b ( z ) 2 = K ab K ba F 2 sin 2 β d z
F = 1 1 + ( β a β b ) 2 4 K ab K ba
β d = K ab K ba F
Efficiency = 1 1 + Δ β 2 4 K ab K ba
L c = π 2 K ab K ba 1 + Δ β 2 4 K ab K ba
Eff = 1 1 + a ( Δ d ) 2
L c = b 1 + a ( Δ d ) 2

Metrics