Abstract

Wavelength selective coupling is demonstrated between the core of a D-shaped optical fiber and a multimode planar waveguide. The fabrication process consists of wet chemical etching of the D-fiber and spin coating or molding to produce the planar waveguide. This fabrication process is shown to produce weak coupling and long interaction length, which exhibits transmission dips with narrow wavelength linewidths. A comb filter is demonstrated with peak separations of 12nm, transmission dips of -20dB, and linewidths of 0.25nm. High sensitivity is demonstrated by showing shift in the transmission dips of -3.16 nm/degree C.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
    [CrossRef]
  2. F. Pan, K. McCallion, and M. Chiappetta, "Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate," Appl. Phys. Lett. 74, 492-494 (1999).
    [CrossRef]
  3. K. Sohn and J. Song, "Thermooptically tunable side-polished fiber comb filter and its application," IEEE Photon. Technol. Lett. 14, 1575-1577 (2002).
    [CrossRef]
  4. W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
    [CrossRef]
  5. C. A. Millar, M. C. Brierley, and S. R. Mallinson, "Exposed-core single-mode-fiber channel-dropping filter using a high index overlay waveguide," Opt. Lett. 12, 284-286 (1987).
    [CrossRef] [PubMed]
  6. M. S. Dinleyici, "An experimental work on optical component based on D-fiber/slab evanescent coupling structure," Opt. Quantum Electron. 35, 75-84 (2003).
    [CrossRef]
  7. D. L. Lee, Electromagnetic Principles of Integrated Optics, (New York: Wiley, 1986).
  8. A. T. Andreev and K. P. Panajotov, "Distributed single-mode fiber to single-mode planar waveguide coupler," J. Lightwave Technol. 11, 1985-1989 (1993).
    [CrossRef]
  9. M. A. Jensen and R. H. Selfridge, "Analysis of etching-induced birefringence changes in elliptic core fibers," Appl. Opt. 31, 2011-2016 (1992).
    [CrossRef] [PubMed]

2003 (1)

M. S. Dinleyici, "An experimental work on optical component based on D-fiber/slab evanescent coupling structure," Opt. Quantum Electron. 35, 75-84 (2003).
[CrossRef]

2002 (1)

K. Sohn and J. Song, "Thermooptically tunable side-polished fiber comb filter and its application," IEEE Photon. Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

2001 (1)

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

2000 (1)

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

1999 (1)

F. Pan, K. McCallion, and M. Chiappetta, "Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate," Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

1993 (1)

A. T. Andreev and K. P. Panajotov, "Distributed single-mode fiber to single-mode planar waveguide coupler," J. Lightwave Technol. 11, 1985-1989 (1993).
[CrossRef]

1992 (1)

1987 (1)

Andreev, A. T.

A. T. Andreev and K. P. Panajotov, "Distributed single-mode fiber to single-mode planar waveguide coupler," J. Lightwave Technol. 11, 1985-1989 (1993).
[CrossRef]

Brierley, M. C.

Chiappetta, M.

F. Pan, K. McCallion, and M. Chiappetta, "Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate," Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

Dinleyici, M. S.

M. S. Dinleyici, "An experimental work on optical component based on D-fiber/slab evanescent coupling structure," Opt. Quantum Electron. 35, 75-84 (2003).
[CrossRef]

Jensen, M. A.

Jung, W.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Kang, S.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Kim, E.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kim, K.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Kim, S.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kwon, H.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Lee, S.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Mallinson, S. R.

McCallion, K.

F. Pan, K. McCallion, and M. Chiappetta, "Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate," Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

Millar, C. A.

Pan, F.

F. Pan, K. McCallion, and M. Chiappetta, "Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate," Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

Panajotov, K. P.

A. T. Andreev and K. P. Panajotov, "Distributed single-mode fiber to single-mode planar waveguide coupler," J. Lightwave Technol. 11, 1985-1989 (1993).
[CrossRef]

Selfridge, R. H.

Sohn, K.

K. Sohn and J. Song, "Thermooptically tunable side-polished fiber comb filter and its application," IEEE Photon. Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

Song, J.

K. Sohn and J. Song, "Thermooptically tunable side-polished fiber comb filter and its application," IEEE Photon. Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Pan, K. McCallion, and M. Chiappetta, "Waveguide fabrication and high-speed in-line intensity modulation in 4-N, N-4 prime -dimethylamino-4 prime -N prime -methyl-stilbazolium tosylate," Appl. Phys. Lett. 74, 492-494 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Sohn and J. Song, "Thermooptically tunable side-polished fiber comb filter and its application," IEEE Photon. Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, "High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide," IEEE Photon. Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

J. Lightwave Technol. (1)

A. T. Andreev and K. P. Panajotov, "Distributed single-mode fiber to single-mode planar waveguide coupler," J. Lightwave Technol. 11, 1985-1989 (1993).
[CrossRef]

Opt. Commun. (1)

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, "Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide," Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. S. Dinleyici, "An experimental work on optical component based on D-fiber/slab evanescent coupling structure," Opt. Quantum Electron. 35, 75-84 (2003).
[CrossRef]

Other (1)

D. L. Lee, Electromagnetic Principles of Integrated Optics, (New York: Wiley, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The linewidth of a coupled mode with C=1 (Solid), C=5 (dot-dashed), C=25 (dashed).

Fig. 2:
Fig. 2:

The interaction length of a (a) side-polished fiber is dependent on the curvature of the polished fiber, while the interaction length of a (b) D-fiber device can be made arbitrarily long.

Fig. 3:
Fig. 3:

A D-fiber with a 2 μm × 4 µm elliptical core, 13 μm from the flat surface. Mode index at λ=1550 nm is n=1.45.

Fig. 4.
Fig. 4.

(a) Model of an etched D-fiber coupled with a PMMA slab waveguide 6 μm thick, index = 1.55 and coupling length = 10 mm. (b) A coupled mode of approximately -18 dB exists at 1569 nm with FWHM ∼ 2 nm.

Fig. 5.
Fig. 5.

(a) An etched D-fiber coupled with a mold-formed epoxy waveguide using epoxy number 20–3302 from Epoxies, etc. (Cranston, RI). Epoxy and covlerslip thickness above the fiber are 100 and 150 µm respectively. (b) Coupled modes of up to -20 dB exist, spaced 12 nm apart and having FWHM ∼ 0.25 nm in the transmission spectrum (top). The mode at ∼1571 nm shows a sensitivity of 26.12 dB/nm (bottom).

Fig. 6.
Fig. 6.

Temperature sensitivity of coupled mode for an SCF with a PMMA slab.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 t m n o 2 n ef 2 ,
P a / P 0 = C a 0 2 / ( C 0 a C a 0 + Δ k 2 / 4 )
L = π / 2 C .

Metrics