Abstract

We demonstrate a Fourier pulse-shaper-based differential group delay (DGD) emulator which can be programmed to possess arbitrary user-specified frequency dependent DGD profile. The DGD produced can be up to 400ps range with <1ps accuracy. Generated frequency-dependent DGD profiles are in excellent agreement with numerical simulations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightwave Technol. 9, 1439-1456 (1991).
    [CrossRef]
  2. I. Kaminow, "Polarization mode dispersion" in Optical Fiber Communications IVb, Ed. (San Diego, CA, Academic Press, 745-762 (2002).
  3. G. Biondini, W. L. Kath, and C. R. Menyuk, "Importance Sampling for PMD," IEEE Photon. Technol. Lett. 14, 310-312 (2002).
    [CrossRef]
  4. L. Yan, M. C. Hauer, Y. Shi, X. S. Yao, P. Ebrahimi, Y. Wang, A. E. Willner, and W. L. Kath, "PMD Emulator using variable DGD elements and its use for experimental importance sampling," J. Lightwave Technol. 22, 1051-1058 (2004).
    [CrossRef]
  5. I. T. Lima, R. Khosravani, P. Ebrahimi, E. Ibragimov, C. R. Menyuk, and A. E. Willner, "Comparison of polarization mode dispersion emulators," J. Lightwave Technol. 19, 1872-1881 (2001).
    [CrossRef]
  6. R. Chipman and R. Kinnera, "High-order polarization mode dispersion emulator," Opt. Eng. 41, 932-937 (2002).
    [CrossRef]
  7. D. S. Waddy,  et al., "High-order PMD and PDL emulation," Optical Fiber Communication Conference, ThF6, Los Angeles, CA, (2004).
  8. M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
    [CrossRef]
  9. M. Akbulut, R. Nelson, A. M. Weiner, P. Cronin, and P. J. Miller, "Broadband polarization correction with programmable liquid-crystal modulator arrays," Opt. Lett. 29, 1129-1131 (2004).
    [CrossRef] [PubMed]
  10. P. B. Phua, H. A. Haus, and E. P. Ippen, "All-frequency PMD compensator in feedforward scheme," J. Lightwave Technol. 22, 1280-1288 (2004).
    [CrossRef]
  11. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  12. R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express. 11, 1763-1769 (2003).
    [CrossRef] [PubMed]
  13. G. H. Lee, S. Xiao, and A. M. Weiner, "Optical dispersion compensator with >4000-ps/nm tuning range using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
    [CrossRef]
  14. M. Shirasaki, "Large Angular Dispersion by a Virtually Imaged Phased Array and its application to a wavelength demultiplexer," Opt. Lett. 21, 366-368 (1996).
    [CrossRef] [PubMed]
  15. S. Xiao, A. M. Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. Quantum Electron. 40, 420-426 (2004).
    [CrossRef]
  16. T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557-559 (2001).
    [CrossRef]
  17. S. X. Wang and A. M. Weiner, "Fast wavelength-parallel polarimeter for broadband optical networks," Opt. Lett. 29, 923-925 (2004).
    [CrossRef] [PubMed]
  18. L. Polachek, D. Oron, and Y. Silberberg, "Full control of the spectral polarization of ultrashort pulses," Opt. Lett. 31, 631-633 (2006).
    [CrossRef] [PubMed]
  19. M. Akbulut, A. M. Weiner, and P. J. Miller, "Wideband all-order polarization mode dispersion compensation via pulse shaping," Opt. Lett. 30, 2691-2693 (2005).
    [CrossRef] [PubMed]
  20. C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
    [CrossRef]

2006 (2)

G. H. Lee, S. Xiao, and A. M. Weiner, "Optical dispersion compensator with >4000-ps/nm tuning range using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
[CrossRef]

L. Polachek, D. Oron, and Y. Silberberg, "Full control of the spectral polarization of ultrashort pulses," Opt. Lett. 31, 631-633 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Akbulut, A. M. Weiner, and P. J. Miller, "Wideband all-order polarization mode dispersion compensation via pulse shaping," Opt. Lett. 30, 2691-2693 (2005).
[CrossRef] [PubMed]

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

2004 (5)

2003 (1)

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express. 11, 1763-1769 (2003).
[CrossRef] [PubMed]

2002 (3)

G. Biondini, W. L. Kath, and C. R. Menyuk, "Importance Sampling for PMD," IEEE Photon. Technol. Lett. 14, 310-312 (2002).
[CrossRef]

R. Chipman and R. Kinnera, "High-order polarization mode dispersion emulator," Opt. Eng. 41, 932-937 (2002).
[CrossRef]

M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
[CrossRef]

2001 (2)

2000 (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

1996 (1)

1991 (1)

G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightwave Technol. 9, 1439-1456 (1991).
[CrossRef]

Akbulut, M.

Antonelli, C.

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

Biondini, G.

G. Biondini, W. L. Kath, and C. R. Menyuk, "Importance Sampling for PMD," IEEE Photon. Technol. Lett. 14, 310-312 (2002).
[CrossRef]

Boroditsky, M.

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

Brixner, T.

Brodsky, M.

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

Chipman, R.

R. Chipman and R. Kinnera, "High-order polarization mode dispersion emulator," Opt. Eng. 41, 932-937 (2002).
[CrossRef]

Cornick, K.

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

Cronin, P.

Demma, S.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
[CrossRef]

Ebrahimi, P.

Foschini, G. J.

G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightwave Technol. 9, 1439-1456 (1991).
[CrossRef]

Gerber, G.

Ginsin, N.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
[CrossRef]

Hauer, M. C.

Haus, H. A.

Ibragimov, E.

Ippen, E. P.

Kath, W. L.

Khosravani, R.

Kinnera, R.

R. Chipman and R. Kinnera, "High-order polarization mode dispersion emulator," Opt. Eng. 41, 932-937 (2002).
[CrossRef]

Leaird, D. E.

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express. 11, 1763-1769 (2003).
[CrossRef] [PubMed]

Lee, G. H.

G. H. Lee, S. Xiao, and A. M. Weiner, "Optical dispersion compensator with >4000-ps/nm tuning range using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
[CrossRef]

Lima, I. T.

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

Mecozzi, A.

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

Menyuk, C. R.

Miller, P. J.

Nelson, R.

Nelson, R. D.

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express. 11, 1763-1769 (2003).
[CrossRef] [PubMed]

Oron, D.

Phua, P. B.

Polachek, L.

Poole, C. D.

G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightwave Technol. 9, 1439-1456 (1991).
[CrossRef]

Shi, Y.

Shirasaki, M.

Silberberg, Y.

Vinegoni, C.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
[CrossRef]

Wang, S. X.

Wang, Y.

Wegmuller, M.

M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
[CrossRef]

Weiner, A. M.

G. H. Lee, S. Xiao, and A. M. Weiner, "Optical dispersion compensator with >4000-ps/nm tuning range using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
[CrossRef]

M. Akbulut, A. M. Weiner, and P. J. Miller, "Wideband all-order polarization mode dispersion compensation via pulse shaping," Opt. Lett. 30, 2691-2693 (2005).
[CrossRef] [PubMed]

S. Xiao, A. M. Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

S. X. Wang and A. M. Weiner, "Fast wavelength-parallel polarimeter for broadband optical networks," Opt. Lett. 29, 923-925 (2004).
[CrossRef] [PubMed]

M. Akbulut, R. Nelson, A. M. Weiner, P. Cronin, and P. J. Miller, "Broadband polarization correction with programmable liquid-crystal modulator arrays," Opt. Lett. 29, 1129-1131 (2004).
[CrossRef] [PubMed]

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express. 11, 1763-1769 (2003).
[CrossRef] [PubMed]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Willner, A. E.

Xiao, S.

G. H. Lee, S. Xiao, and A. M. Weiner, "Optical dispersion compensator with >4000-ps/nm tuning range using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
[CrossRef]

S. Xiao, A. M. Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

Yan, L.

Yao, X. S.

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. Antonelli, A. Mecozzi, K. Cornick, M. Brodsky, and M. Boroditsky, "PMD-Induced Penalty Statistics in Fiber Links," IEEE Photon. Technol. Lett. 17, 1013-1015 (2005).
[CrossRef]

G. Biondini, W. L. Kath, and C. R. Menyuk, "Importance Sampling for PMD," IEEE Photon. Technol. Lett. 14, 310-312 (2002).
[CrossRef]

M. Wegmuller, S. Demma, C. Vinegoni, and N. Ginsin, "Emulator of first- and second-order polarization-mode dispersion," IEEE Photon. Technol. Lett. 14, 630-632 (2002).
[CrossRef]

G. H. Lee, S. Xiao, and A. M. Weiner, "Optical dispersion compensator with >4000-ps/nm tuning range using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Eng. (1)

R. Chipman and R. Kinnera, "High-order polarization mode dispersion emulator," Opt. Eng. 41, 932-937 (2002).
[CrossRef]

Opt. Express. (1)

R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express. 11, 1763-1769 (2003).
[CrossRef] [PubMed]

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Other (2)

D. S. Waddy,  et al., "High-order PMD and PDL emulation," Optical Fiber Communication Conference, ThF6, Los Angeles, CA, (2004).

I. Kaminow, "Polarization mode dispersion" in Optical Fiber Communications IVb, Ed. (San Diego, CA, Academic Press, 745-762 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

VIPA pulse shaper based DGD emulator.

Fig. 2.
Fig. 2.

(a). One out of every 5 SLM pixels turned on to check wavelength-to-pixel mapping. (b) Quadratic fit to the frequencies corresponding to the wavelength peaks in (a), which yields the pixel vs. frequency mapping.

Fig. 3.
Fig. 3.

(a). Experimental setup (b) Output power spectrum (c) Output time domain pulse with DGD=0.

Fig. 4.
Fig. 4.

Time domain pulse splitting due to constant DGD with 2τ equal to (a) 10ps, (b) 25ps, (c) 60ps, (d) 80ps. (e) Temporal windowing effect shown by large DGD values, power halved at Δτ =0 to account of the merging of the pair of pulses.

Fig. 5.
Fig. 5.

Pulse experiencing constant DGD of 2τ=400ps and linear DGD with 2τω equal to (a) 0ps2, (b) 36ps2, (c) 44ps2, and (d) 54ps2.

Fig. 6.
Fig. 6.

Pulse experiencing constant DGD of 2τ=600ps and quadratic DGD with τωω equal to (a) -34.2 ps3, (b) -43ps3, (c) -50ps3, and (d) -54.3ps3.

Fig. 7.
Fig. 7.

Spectral SOP plot of 15GHz bandwidth at the output of the DGD emulator with constant DGD values of (a) 0, and (b) 2τ=60ps. Note: the PSP (center of the circles) of the DGD emulator is polarization shifted away from 45° by the single mode fiber at the output.

Fig. 8.
Fig. 8.

Spectral SOP with (a) linear DGD of τω=11ps2, (b) quadratic DGD of τωω = 34.2ps3, (c) combined DGD with τ = 10ps and τωω = 34.2ps3. Distance between neighboring SOP points of (d) τω=11ps2, (e) τωω = 34.2ps3, and (f) τ = 10ps and τωω = 34.2ps3.

Tables (1)

Tables Icon

Table 1. Values of measured DGD compared to the set DGD of the emulator using the frequency domain analysis.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T ( ω ) = e ( ω ) [ e ( ω ) 0 0 e ( ω ) ] ,
τ ( ω ) = τ + ( ω ) = ( ω ) d ω
Δτ ( ω ) = τ + ( ω ) τ ( ω ) = 2 d ϕ ( ω ) d ω
Δτ ( ω ) = 2 τ + 2 τ ω ( ω ω 0 ) + τ ωω ( ω ω 0 ) 2 +
Δτ ( ω ) = τ + ( ω ) τ ( ω ) = 2 Δϕ ( ω ) Δω
ω ( n ) = a ( n n 0 ) 2 + b ( n n 0 ) + ω 0
2 ϕ ( n ) = 2 τ ( a ( n n 0 ) 2 + b ( n n 0 ) ) τ ω ( a ( n n 0 ) 2 + b ( n n 0 ) ) 2 1 3 τ ωω ( a ( n n 0 ) 2 + b ( n n 0 ) ) 3 +
l ( ω ) = ( Δ τ ( ω ) Δ ω ) sin ( ξ )

Metrics