Abstract

Digital signal processing (DSP) combined with a phase and polarization diverse coherent receiver is a promising technology for future optical networks. Not only can the DSP be used to remove the need for dynamic polarization control, but also it may be utilized to compensate for nonlinear and linear transmission impairments. In this paper we present results of a 42.8Gbit/s nonlinear transmission experiment, using polarization multiplexed QPSK data at 10.7GBaud, with 4 bits per symbol. The digital coherent receiver allows 107,424 ps/nm of chromatic dispersion to be compensated digitally after transmission over 6400km of standard single mode fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Han and G. Li, "Coherent optical communication using polarization multiple-input-multiple-output," Opt. Express 13, 7527-7534 (2005).
    [CrossRef] [PubMed]
  2. S. Tsukamoto, D.-S Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," in Proceedings of Optical Fiber Communications Conference 2005, paper PDP-29.
  3. M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments," IEEE Photon. Technol. Lett. 16, 674 - 676 (2004).
    [CrossRef]
  4. D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
    [CrossRef]
  5. A. Hardy and W. Streifer, "Coupled mode solutions of multiwaveguide systems," IEEE J. Quantum Electron. 22, 528 - 534 (1986).
    [CrossRef]
  6. D. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867 - 1875 (1980).
    [CrossRef]
  7. J. G. Proakis, Digital Communications (McGraw-Hill, 2001), Chap. 11.
  8. M. Jeruchim, "Techniques for estimating the Bit Error Rate in the simulation of Digital Communication Systems," IEEE J. Sel. Areas Commun. 2, 153 - 170 (1984).
    [CrossRef]

2006 (1)

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

2005 (1)

2004 (1)

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments," IEEE Photon. Technol. Lett. 16, 674 - 676 (2004).
[CrossRef]

1986 (1)

A. Hardy and W. Streifer, "Coupled mode solutions of multiwaveguide systems," IEEE J. Quantum Electron. 22, 528 - 534 (1986).
[CrossRef]

1984 (1)

M. Jeruchim, "Techniques for estimating the Bit Error Rate in the simulation of Digital Communication Systems," IEEE J. Sel. Areas Commun. 2, 153 - 170 (1984).
[CrossRef]

1980 (1)

D. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867 - 1875 (1980).
[CrossRef]

Godard, D.

D. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867 - 1875 (1980).
[CrossRef]

Han, Y.

Hardy, A.

A. Hardy and W. Streifer, "Coupled mode solutions of multiwaveguide systems," IEEE J. Quantum Electron. 22, 528 - 534 (1986).
[CrossRef]

Jeruchim, M.

M. Jeruchim, "Techniques for estimating the Bit Error Rate in the simulation of Digital Communication Systems," IEEE J. Sel. Areas Commun. 2, 153 - 170 (1984).
[CrossRef]

Laperle, C.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

Li, C. D.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

Li, G.

Mak, G.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

McGhan, D.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

O'Sullivan, M.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

Savchenkov, A.

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

Streifer, W.

A. Hardy and W. Streifer, "Coupled mode solutions of multiwaveguide systems," IEEE J. Quantum Electron. 22, 528 - 534 (1986).
[CrossRef]

Taylor, M. G.

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments," IEEE Photon. Technol. Lett. 16, 674 - 676 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Hardy and W. Streifer, "Coupled mode solutions of multiwaveguide systems," IEEE J. Quantum Electron. 22, 528 - 534 (1986).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. Jeruchim, "Techniques for estimating the Bit Error Rate in the simulation of Digital Communication Systems," IEEE J. Sel. Areas Commun. 2, 153 - 170 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments," IEEE Photon. Technol. Lett. 16, 674 - 676 (2004).
[CrossRef]

D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation," IEEE Photon. Technol. Lett. 18, 400 - 402 (2006).
[CrossRef]

IEEE Trans. Commun. (1)

D. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. 28, 1867 - 1875 (1980).
[CrossRef]

Opt. Express (1)

Other (2)

S. Tsukamoto, D.-S Ly-Gagnon, K. Katoh, and K. Kikuchi, "Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission," in Proceedings of Optical Fiber Communications Conference 2005, paper PDP-29.

J. G. Proakis, Digital Communications (McGraw-Hill, 2001), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of phase and polarization diverse receiver

Fig. 2.
Fig. 2.

Experimental setup, with 42.8 Gbit/s obtained by polarization multiplexing two 21.4Gbit/s NRZ-QPSK signals. PBS: Polarization beam splitter; PC: Polarization controller; SMF: Single mode fiber; AOM: Acousto-optic modulator; PPG: Pulse pattern generator; AWG: Array waveguide filter.

Fig. 3.
Fig. 3.

Contour plot of launch power versus distance for BER=3×10-3, indicating a maximum reach of 6480km

Fig 4.
Fig 4.

Recovered constellation diagrams with -7dBm launch power after 6400km transmission, having compensated for 107,424 ps/nm of chromatic dispersion digitally with an overall BER=2.4×10-3

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d E dz = jK E
E ( z = L ) = 2 + j 5 1 1 + j 1 + j 1 + j 1 1 + j 1 + j 1 + j 1 E sig 0 E lo exp ( 3 j π 4 )
i 1 i 2 i 3 = 2 2 5 Re ( E sig E lo * ) Re ( E sig E lo * ) Im ( E sig E lo * ) Im ( E sig E lo * ) coherently det ected terms + 1 5 E sig 2 + 2 E lo 2 2 E sig 2 + 2 E lo 2 2 E sig 2 + E lo 2 directly det ected terms
h xx = h xx + μ ε x x′ x ¯ h xy = h xy + μ ε x x′ y ¯
h yx = h yx + μ ε y y′ x ¯ h yy = h yy + μ ε y y′ y ¯
ϕ x = arg i = 1 N csgn ( X i ) ¯ X i ϕ y = arg i = 1 N csgn ( Y i ) ¯ Y i
csgn ( x ) = { 1 + j [ Re ( x ) > 0 , Im ( x ) > 0 ] 1 j Re ( x ) > 0 , Im ( x ) < 0 ] 1 + j Re ( x ) < 0 , Im ( x ) > 0 ] 1 j [ Re ( x ) < 0 , Im ( x ) < 0 ]
h xx = h xx + μ ε x x ¯ h xy = h xy + μ ε x y ¯
h yx = h yx + μ ε y x ¯ h yy = h yy + μ ε y y ¯
OSNR = P launch + 37.5 10 log 10 ( N )

Metrics