Abstract

The feasibility of metrological characterization of the one-dimensional (1D) holographic gratings, used in the nanoimprint molding tool fabrication step, by spectroscopic Mueller polarimetry in conical diffraction is investigated. The studied samples correspond to two different steps of the replicated diffraction grating fabrication process. We characterized master gratings that consist of patterned resist layer on chromium-covered glass substrate and complementary (replica) gratings made of nickel. The profiles of the gratings obtained by fitting the experimental spectra of Mueller matrix coefficients taken at different azimuthal angles were confirmed by atomic force microscopy (AFM) measurements. The calculated profiles of corresponding master and replica gratings are found to be complementary. We conclude that the Mueller polarimetry, as a fast and non-contact optical characterization technique, can provide the basis for the metrology of the molding tool fabrication step in the nanoimprint technique.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gale, "Replicated Diffractive Optics and Micro-Optics," Opt. Photonic News, 24-29, August (2003).
    [CrossRef]
  2. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28, 616-618 (2003).
    [CrossRef] [PubMed]
  3. B. K. Minhas, S. A. Coulombe, S. S. H. Naqvi, and John R. McNeil, "Ellipsometric scatterometry for the metrology of Sub-0.1-µm-linewidth structures," Appl. Opt. 37, 5112-5115 (1998).
    [CrossRef]
  4. Y. -S. Ku, S. -C. Wang, D. -M. Shyu, and N. Smith, "Scatterometry-based metrology with feature region signatures matching," Opt. Express 14, 8482-8491 (2006).
    [CrossRef] [PubMed]
  5. H.-T. Huang, W. Kong, and F. L. Terry, Jr, "Normal-incidence spectroscopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983 - 3985 (2001).
    [CrossRef]
  6. T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
    [CrossRef]
  7. T. Novikova, A. De Martino, S. Ben Hatit, and B. Drévillon, "Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics," Appl. Opt. 45, 3688-3697 (2006).
    [CrossRef] [PubMed]
  8. A. De Martino, T. Novikova, Ch. Arnold, S. BenHatit, and B. Drévillon, "Decorrelation of fitting parameters by Mueller polarimetry in conical diffraction," in Metrology, Inspection, and Process Control for Microlithography XX, Chas N. Archie, ed., Proc. SPIE 6152, 530-541, (2006).
  9. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
    [CrossRef]
  10. CompOptics Ltd., http://www.compoptics.ru/.
  11. S. Yu. Serezhnikov. "Preparation, treatment and visualization of data for the fabrication of holograms using electron beam system ZBA-21," Numerical Methods and Programming,  3, 110-115 (2002) (in Russian).
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  13. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996).
    [CrossRef]
  14. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996)
    [CrossRef]
  15. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996).
    [CrossRef]
  16. L. Li, "Symmetries of cross-polarization diffraction coefficients of gratings," J. Opt. Soc. Am. A 17, 881-887 (2000).
    [CrossRef]

2006

2005

T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
[CrossRef]

2004

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
[CrossRef]

2003

2002

S. Yu. Serezhnikov. "Preparation, treatment and visualization of data for the fabrication of holograms using electron beam system ZBA-21," Numerical Methods and Programming,  3, 110-115 (2002) (in Russian).

2001

H.-T. Huang, W. Kong, and F. L. Terry, Jr, "Normal-incidence spectroscopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983 - 3985 (2001).
[CrossRef]

2000

1998

1996

1995

Ben Hatit, S.

Coulombe, S. A.

De Martino, A.

T. Novikova, A. De Martino, S. Ben Hatit, and B. Drévillon, "Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics," Appl. Opt. 45, 3688-3697 (2006).
[CrossRef] [PubMed]

T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28, 616-618 (2003).
[CrossRef] [PubMed]

Drévillon, B.

T. Novikova, A. De Martino, S. Ben Hatit, and B. Drévillon, "Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics," Appl. Opt. 45, 3688-3697 (2006).
[CrossRef] [PubMed]

T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
[CrossRef]

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28, 616-618 (2003).
[CrossRef] [PubMed]

Garcia-Caurel, E.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28, 616-618 (2003).
[CrossRef] [PubMed]

Gaylord, T. K.

Grann, E. B.

Huang, H.-T.

H.-T. Huang, W. Kong, and F. L. Terry, Jr, "Normal-incidence spectroscopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983 - 3985 (2001).
[CrossRef]

John, S. S. H.

Kim, Y. K.

Kong, W.

H.-T. Huang, W. Kong, and F. L. Terry, Jr, "Normal-incidence spectroscopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983 - 3985 (2001).
[CrossRef]

Ku, Y. -S.

Lalanne, P.

Laude, B.

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
[CrossRef]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28, 616-618 (2003).
[CrossRef] [PubMed]

Li, L.

Minhas, B. K.

Moharam, M. G.

Morris, G. M.

Naqvi, S. S. H.

Novikova, T.

T. Novikova, A. De Martino, S. Ben Hatit, and B. Drévillon, "Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics," Appl. Opt. 45, 3688-3697 (2006).
[CrossRef] [PubMed]

T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
[CrossRef]

Ossikovski, R.

T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
[CrossRef]

Pommet, D. A.

Serezhnikov, S. Yu.

S. Yu. Serezhnikov. "Preparation, treatment and visualization of data for the fabrication of holograms using electron beam system ZBA-21," Numerical Methods and Programming,  3, 110-115 (2002) (in Russian).

Shyu, D. -M.

Smith, N.

Terry, F. L.

H.-T. Huang, W. Kong, and F. L. Terry, Jr, "Normal-incidence spectroscopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983 - 3985 (2001).
[CrossRef]

Wang, S. -C.

Appl. Opt.

Appl. Phys. Lett.

H.-T. Huang, W. Kong, and F. L. Terry, Jr, "Normal-incidence spectroscopic ellipsometry for critical dimension monitoring," Appl. Phys. Lett. 78, 3983 - 3985 (2001).
[CrossRef]

Eur. Phys. J. Appl. Phys.

T. Novikova, A. De Martino, R. Ossikovski, and B. Drévillon, "Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics," Eur. Phys. J. Appl. Phys. 31, 63-69 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Numerical Methods and Programming

S. Yu. Serezhnikov. "Preparation, treatment and visualization of data for the fabrication of holograms using electron beam system ZBA-21," Numerical Methods and Programming,  3, 110-115 (2002) (in Russian).

Opt. Express

Opt. Lett.

Thin Solid Films

A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films, 455-456, 112-119, (2004).
[CrossRef]

Other

CompOptics Ltd., http://www.compoptics.ru/.

M. Gale, "Replicated Diffractive Optics and Micro-Optics," Opt. Photonic News, 24-29, August (2003).
[CrossRef]

A. De Martino, T. Novikova, Ch. Arnold, S. BenHatit, and B. Drévillon, "Decorrelation of fitting parameters by Mueller polarimetry in conical diffraction," in Metrology, Inspection, and Process Control for Microlithography XX, Chas N. Archie, ed., Proc. SPIE 6152, 530-541, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

SEM image of 1D diffraction grating test-structure (resist on Cr substrate) with the nominal period of 800 nm and resist linewidth of 400 nm. Dark lines correspond to the resist grating ridges; bright regions show the exposed chromium in the bottom of the groove. Significant variation of the resist linewidth (297 nm – 396 nm) is observed over the area. The dot line at the bottom shows 5 μm.

Fig. 2.
Fig. 2.

Symmetric trapezoidal model of the grating ridge. H is the height of the ridge, L is the top width and A is the slope projection.

Fig. 3.
Fig. 3.

Measured (solid lines) and calculated (open circles) spectra of normalized Mueller matrix coefficients for the master sample S1200/700 at different azimuthal angles φ.

Fig. 4.
Fig. 4.

Results of the simulations (solid lines) and AFM measurements (dash-dotted lines) for the samples S1200/700 (a) and S1000/400 (b). Dashed lines correspond to the nominal values of the grating parameters.

Fig. 5.
Fig. 5.

AFM images of the samples S1200/700 (a) and S1000/400 (b).

Fig. 6.
Fig. 6.

Normalized spectral Mueller matrix coefficients of the master grating samples S1200/700 at azimuthal angle φ = 75° (a) and S1000/400 at azimuthal angle φ = 105° (b). Experimental data are shown by solid line, the spectra of optimal trapezoidal profile are plotted with open circles. The curves with solid circles represent the spectra of nominal rectangular profile. Both profiles are depicted in the bottom of the figure.

Fig. 7.
Fig. 7.

Measured (solid lines) and calculated (open circles) spectra of normalized Mueller matrix coefficients for nickel replica S1000/600 at different azimuthal angles φ.

Fig. 8.
Fig. 8.

Results of the simulations (solid lines) and AFM measurements (dash-dotted lines) for the nickel gratings S1200/500 (a) and S1000/600 (b).

Fig. 9.
Fig. 9.

AFM images of the Ni replica gratings S1200/500 (a) and S1000/600 (b).

Fig. 10.
Fig. 10.

Normalized spectral Mueller matrix coefficients of the nickel replica gratings S1200/500 at azimuthal angle φ = 85° (a) and S1000/600 at azimuthal angle φ = 95° (b). Experimental data are shown by solid line, the spectra of optimal trapezoidal profile are plotted with open circles. The curves with solid circles represent the spectra of nominal rectangular profile. Both profiles are depicted in the bottom of the figure.

Fig. 11.
Fig. 11.

SEM images of the nickel replica samples S1200/500 (a) and S1000/600 (b) The white bar at the bottom shows 1 μm.

Fig. 12.
Fig. 12.

Profiles of the master grating S1200/700 (a) and replica grating S1200/500 (b) from AFM measurements. The calculated optimal profiles of the same gratings obtained from polarimetric measurements, meshed (c).

Fig. 13.
Fig. 13.

Profiles of the master grating S1000/400 (a) and replica grating S1000/600 (b) from AFM measurements. The calculated optimal profiles of the same gratings obtained from the polarimetric measurements, meshed (c)

Fig. 14.
Fig. 14.

Measured and calculated diffraction efficiencies for zeroth and first orders in TE and TM polarization at near-normal incidence at 632.8 nm for S1000/400 (a) and S1000/600 (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E p r E s r = [ J 11 J 12 J 21 J 22 ] E p i E s i
M = [ 1 2 ( J 11 2 + J 22 2 + J 12 2 + J 21 2 ) 1 2 ( J 11 2 J 22 2 J 12 2 + J 21 2 ) Re ( J 11 * J 12 + J 21 * J 22 ) Im ( J 11 * J 12 + J 21 * J 22 ) 1 2 ( J 11 2 J 22 2 + J 12 2 J 21 2 ) 1 2 ( J 11 2 + J 22 2 J 12 2 J 21 2 ) Re ( J 11 * J 12 J 21 * J 22 ) Im ( J 11 * J 12 + J 21 * J 22 ) Re ( J 11 * J 21 + J 12 * J 22 ) Re ( J 11 * J 21 J 12 * J 22 ) Re ( J 11 * J 22 + J 12 * J 21 ) Im ( J 11 * J 22 + J 12 * J 21 ) Im ( J 11 * J 21 + J 12 * J 22 ) Im ( J 11 * J 21 J 12 * J 22 ) Im ( J 11 * J 22 + J 12 * J 21 ) Re ( J 11 * J 22 J 12 * J 21 ) ]

Metrics