Abstract

Based on a simple eye model system, a high resolution adaptive optics retina imaging system was built to demonstrate the availability of using liquid crystal devices as a wave-front corrector for both low and high order aberrations. Myopia glass was used to introduce large low order aberrations. A fiber bundle was used to simulate the retina. After correction, its image at different diopters became very clear. We can get a root mean square(RMS) correction precision of lower than 0.049λ (λ =0.63μm) for over to 10 diopters and the modulation transfer function (MTF) retains 51lp/mm, which is nearly the diffraction limited resolution for a 2.7mm pupil diameter. The closed loop bandwidth was nearly 4 Hz, which is capable to track most of the aberration dynamics in a real eye.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
    [CrossRef]
  2. M. S. Smirnov, "Measurement of wave aberration in the human eye," Biophysics 6, 766-795 (1961).
  3. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 24, 804-808 (1989).
    [CrossRef]
  4. J. Liang, B. Grimm, S. Goelz, and J. Bille, "Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  5. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  6. J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
    [CrossRef]
  7. Z. Cao, L. Xuan, L. Hu, Y. Liu, and Q. Mu, "Effects of the space-bandwidth product on the liquid-crystal kinoform," Opt. Express 13, 5186-5191 (2005).
    [CrossRef] [PubMed]
  8. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wave-front correction with high precision," Opt. Express 12, 6403-6409 (2004).
    [CrossRef] [PubMed]
  9. F. V. Martin, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
    [CrossRef]
  10. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006).
    [CrossRef] [PubMed]
  11. E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  12. L. N. Thibos and A. Bradley, "Use of Liquid-Crystal Adaptive-Optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997).
    [CrossRef]
  13. P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applicaitons in the human eye," Opt. Express 12, 4059-4071 (2004).
    [CrossRef] [PubMed]
  14. K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).
  15. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
    [CrossRef] [PubMed]
  16. T. Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023(2002).
    [CrossRef] [PubMed]
  17. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001(2006).
    [CrossRef]

2006

Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006).
[CrossRef] [PubMed]

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001(2006).
[CrossRef]

2005

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Z. Cao, L. Xuan, L. Hu, Y. Liu, and Q. Mu, "Effects of the space-bandwidth product on the liquid-crystal kinoform," Opt. Express 13, 5186-5191 (2005).
[CrossRef] [PubMed]

2004

2002

2001

1998

1997

L. N. Thibos and A. Bradley, "Use of Liquid-Crystal Adaptive-Optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

1994

1989

1961

M. S. Smirnov, "Measurement of wave aberration in the human eye," Biophysics 6, 766-795 (1961).

1953

H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Ahnelt, P.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Artal, P.

Babcock, H. W.

H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Bessho, K.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Bille, J.

Bille, J. F.

Bradley, A.

L. N. Thibos and A. Bradley, "Use of Liquid-Crystal Adaptive-Optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997).
[CrossRef]

Cao, Z.

Carroll, J.

J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Dreher, A. W.

Drexler, W.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Fernandez, E. J.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applicaitons in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

Fujikado, T.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Goelz, S.

Gray, D. C.

J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Grimm, B.

Hermann, B.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Hu, L.

Iglesias, I.

Leitgeb, R.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Li, D.

Liang, J.

Liu, Y.

Lu, X.

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001(2006).
[CrossRef]

Maeda, N.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Manzanera, S.

Martin, F. V.

Mihashi, T.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Miller, D. T.

Mu, Q.

Nakazawa, N.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Okawaa, Y.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Povazay, B.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applicaitons in the human eye," Opt. Express 12, 4059-4071 (2004).
[CrossRef] [PubMed]

F. V. Martin, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

Roorda, A.

J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Sattmann, H.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Shirai, T.

Smirnov, M. S.

M. S. Smirnov, "Measurement of wave aberration in the human eye," Biophysics 6, 766-795 (1961).

Thibos, L. N.

L. N. Thibos and A. Bradley, "Use of Liquid-Crystal Adaptive-Optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997).
[CrossRef]

Unterhuber, A.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Weinreb, R. N.

Williams, D. R.

J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

Xuan, L.

Yamaguchi, T.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

Appl. Opt.

Biophysics

M. S. Smirnov, "Measurement of wave aberration in the human eye," Biophysics 6, 766-795 (1961).

Invest. Ophthalmol. Vis. Sci.

K. Bessho, T. Yamaguchi, N. Nakazawa, T. Mihashi, Y. Okawaa, N. Maeda, and T. Fujikado, "Live photoreceptor imaging using a prototype adaptive optics fundus camera: A preliminary result," Invest. Ophthalmol. Vis. Sci. 46, 3547 Suppl. S (2005).

J. Opt. Soc. Am. A

Opt. Eng.

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001(2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

J. Carroll, D. C. Gray, A. Roorda, and D. R. Williams, "Recent advances in Retinal Imaging with Adaptive Optics," Opt. Photonics News 16, 36-42 (2005).
[CrossRef]

Optom. Vision Sci.

L. N. Thibos and A. Bradley, "Use of Liquid-Crystal Adaptive-Optics to alter the refractive state of the eye," Optom. Vision Sci. 74, 581-587 (1997).
[CrossRef]

Publ. Astron. Soc. Pac.

H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Vision Res.

E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444(2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Eye model (1. fiber bundle; 2. double lens; 3. diaphragm; 4.myopia glass)

Fig. 2.
Fig. 2.

Schematic diagram of the adaptive optics system

Fig. 3.
Fig. 3.

Optical layout in lab

Fig. 4.
Fig. 4.

Wave-front errors of the model eye for different diopters.

Fig. 5.
Fig. 5.

Comparison of the wave-front errors of the model eye between theory and experiment in RMS.

Fig. 6.
Fig. 6.

Images of fiber bundle before wave-front correction for different diopters.

Fig. 7.
Fig. 7.

Images of fiber bundle after wave-front correction for different diopters.

Fig. 8.
Fig. 8.

MTF curve of the whole system for different diopters before and after correction

Fig. 9.
Fig. 9.

The Critical frequency of the whole system for different diopters after correction.

Fig. 10.
Fig. 10.

RMS wave-front error of the model eye before (black) and after (red) correction

Tables (2)

Tables Icon

Table 1. Table 1. Detail parameters of LCR2500 and HASO32(a) LCR2500

Metrics