Abstract

We report a structure with 4 thin film layers composed of pure metal and dielectric materials and prepared by sputtering. The reflectance and transmittance are lower than 5% with the absorption to be achieved higher than 95% in the 400–1000nm wavelength region as match to the solar radiance spectrum. The thermal emittance of the structure is in the range of 0.063–0.10 through data analysis. The good reproducibility and stability of spectral data associated with the deposition process imply the advantage of the solar energy absorber which is cost-effective in application.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Behrman, Solar Energy (Little, Brown & Company Limited, 1976).
  2. B. O. Seraphin, Solar Energy Conversion: Solid-State Physics Aspects, B. O. Seraphin, ed., Topics in Applied Physics (Springer, 1979) Vol. 31.
  3. D. M. Trotter and A. J. Sievers, “Spectral selectivity of high-temperature solar absorbers,” Appl. Opt. 19,711–728 (1980).
    [CrossRef] [PubMed]
  4. Q. C. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energ. Mat. Sol. C. 62,63–74 (2000).
    [CrossRef]
  5. S. X. Zhao and Ewa Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90,243–261 (2006).
    [CrossRef]
  6. L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
    [CrossRef]
  7. K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Sol. Energ. Mat. Sol. C. 63,125–137 (2000).
    [CrossRef]
  8. I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Optics 16,1438–1443 (1977).
    [CrossRef]
  9. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
    [CrossRef]
  10. H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
    [CrossRef]
  11. D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids (Academic, 1998).
  12. P. H. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill book company, inc., 1936).

2006 (2)

S. X. Zhao and Ewa Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90,243–261 (2006).
[CrossRef]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

2003 (1)

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
[CrossRef]

2001 (1)

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
[CrossRef]

2000 (2)

Q. C. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energ. Mat. Sol. C. 62,63–74 (2000).
[CrossRef]

K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Sol. Energ. Mat. Sol. C. 63,125–137 (2000).
[CrossRef]

1980 (1)

1977 (1)

I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Optics 16,1438–1443 (1977).
[CrossRef]

Behrman, D.

D. Behrman, Solar Energy (Little, Brown & Company Limited, 1976).

Ding, X. M.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Esashi, M.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
[CrossRef]

Ge, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Hane, K.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
[CrossRef]

Hou, X. Y.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids (Academic, 1998).

Jiang, N.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Jung, W. C.

K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Sol. Energ. Mat. Sol. C. 63,125–137 (2000).
[CrossRef]

Kanamori, Y.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
[CrossRef]

Kashiwa, T.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
[CrossRef]

Kim, J. H.

K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Sol. Energ. Mat. Sol. C. 63,125–137 (2000).
[CrossRef]

Lee, K. D.

K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Sol. Energ. Mat. Sol. C. 63,125–137 (2000).
[CrossRef]

Lu, W.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Lu, X.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Lynch, D. W.

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids (Academic, 1998).

Ma, L. L.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Maruyama, S.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
[CrossRef]

Moon, P. H.

P. H. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill book company, inc., 1936).

Ritchie, I. T.

I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Optics 16,1438–1443 (1977).
[CrossRef]

Sai, H.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
[CrossRef]

Seraphin, B. O.

B. O. Seraphin, Solar Energy Conversion: Solid-State Physics Aspects, B. O. Seraphin, ed., Topics in Applied Physics (Springer, 1979) Vol. 31.

Shao, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Sievers, A. J.

Trotter, D. M.

Wäckelgård, Ewa

S. X. Zhao and Ewa Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90,243–261 (2006).
[CrossRef]

Window, B.

I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Optics 16,1438–1443 (1977).
[CrossRef]

Yugami, H.

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
[CrossRef]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
[CrossRef]

Zhang, Q. C.

Q. C. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energ. Mat. Sol. C. 62,63–74 (2000).
[CrossRef]

Zhao, S. X.

S. X. Zhao and Ewa Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90,243–261 (2006).
[CrossRef]

Zhou, Y. C.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Optics (1)

I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Optics 16,1438–1443 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79,1393–1395 (2001).
[CrossRef]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88,171907 (2006).
[CrossRef]

Sol. Energ. Mat. Sol. C. (4)

K. D. Lee, W. C. Jung, and J. H. Kim, “Thermal degradation of black chrome coatings,” Sol. Energ. Mat. Sol. C. 63,125–137 (2000).
[CrossRef]

H. Sai, H. Yugami, Y. Kanamori, and K. Hane, “Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion,” Sol. Energ. Mat. Sol. C. 79,35–49 (2003).
[CrossRef]

Q. C. Zhang, “Recent progress in high-temperature solar selective coatings,” Sol. Energ. Mat. Sol. C. 62,63–74 (2000).
[CrossRef]

S. X. Zhao and Ewa Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90,243–261 (2006).
[CrossRef]

Other (4)

D. Behrman, Solar Energy (Little, Brown & Company Limited, 1976).

B. O. Seraphin, Solar Energy Conversion: Solid-State Physics Aspects, B. O. Seraphin, ed., Topics in Applied Physics (Springer, 1979) Vol. 31.

D. W. Lynch and W. R. Hunter, Handbook of Optical Constants of Solids (Academic, 1998).

P. H. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill book company, inc., 1936).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of the 4-layer (dielectric/metal/dielectric/metal) structure of solar-thermal conversion structure on the Si substrate.

Fig. 2.
Fig. 2.

Simulated data with respect to transmittance, reflectance and absorptance of the 4-layer structure [SiO2(105nm)/Ti(15nm)/SiO2(95nm)/Al(100nm)] on the Si substrate at normal incidence as compared with the solar irradiance spectrum [12].

Fig. 3.
Fig. 3.

The measured spectra of absorptance changing with the incident angle for the layered structure of SiO2(105nm)/Ti(15nm)/SiO2(95nm)/Al( > 100nm).

Fig. 4.
Fig. 4.

The simulated spectra of absorptance changing with the incident angle based on the layered structure given in Fig. 3.

Fig. 5.
Fig. 5.

The measured spectra of absorptance changing with the thickness of the Ti layer under the condition in which the thicknesses of the SiO2 and Al layers are fixed and other parameters are the same as that given in Fig. 3.

Fig. 6.
Fig. 6.

The comparison of reflectance spectra between measured and simulated one in the 1-5 μm infrared region for the structure given in Fig. 3. The inset shows the calculated emittance with respect to different incident angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε θ T = 0 dλE T λ [ 1 R θ λ ] 0 dλE T λ

Metrics