Abstract

We design and assess a one-dimensional photonic crystal slab fabricated by preferential etching of a silicon-on-insulator substrate. The etched grooves are considered to be infiltrated by a highly-birefringent nematic liquid crystalline material. A detailed analysis of the nematic director response within the grooves is presented. We investigate different configurations and demonstrate large band gap shifting when switching the liquid crystal with an applied voltage. Furthermore, we assess this type of device as an efficient alternative for compact refractometric optical sensing applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
    [CrossRef]
  2. "Photonic crystals and related photonic nanostructures," Jap. J. Appl. Phys. 45, Part 1 (8A) (2006).
  3. M. Bertolotti, "Wave interactions in photonic band structures: an overview," J. Opt. A: Pure Appl. Opt. 8, S9-S32 (2006).
    [CrossRef]
  4. A.M. Merzlikin and A.P. Vinogradov, "Superprism effect in 1D photonic crystal," Opt. Commun. 259, 700-703 (2006).
    [CrossRef]
  5. D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
    [CrossRef]
  6. G.P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004).
    [CrossRef]
  7. R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004).
    [CrossRef]
  8. V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
    [CrossRef]
  9. J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
    [CrossRef]
  10. D. Gerace and L.C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004).
    [CrossRef]
  11. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  12. R. Ferrini, R. Houdré, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003).
    [CrossRef]
  13. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
    [CrossRef]
  14. J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
    [CrossRef]
  15. A.S. Holmes, "Microengineering: the next revolution?," available on: http://www3.imperial.ac.uk/portal/pls/portallive/docs/1/185938.PDF
  16. L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
    [CrossRef]
  17. B. Bellini, J.-F. Larchanché, J.-P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005).
    [CrossRef] [PubMed]
  18. B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
    [CrossRef]
  19. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
    [CrossRef] [PubMed]
  20. E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
    [CrossRef]
  21. E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal directional couplers," J. Appl. Phys. 100, 043118 (2006).
    [CrossRef]
  22. SOITEC website: http://www.soitec.com.
  23. B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
    [CrossRef]
  24. H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005).
    [CrossRef]
  25. R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005).
    [CrossRef]
  26. A. Muravsky, "Photo-induced alignment technology for 3-D surface profiles of LCD substrates", Proc. LCP Conference (2006).
  27. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
    [CrossRef] [PubMed]
  28. I. W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals," (Taylor & Francis, April 2004).
  29. F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
    [CrossRef]
  30. E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000).
    [CrossRef]
  31. C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
    [CrossRef]
  32. W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
    [CrossRef]

2006 (7)

"Photonic crystals and related photonic nanostructures," Jap. J. Appl. Phys. 45, Part 1 (8A) (2006).

M. Bertolotti, "Wave interactions in photonic band structures: an overview," J. Opt. A: Pure Appl. Opt. 8, S9-S32 (2006).
[CrossRef]

A.M. Merzlikin and A.P. Vinogradov, "Superprism effect in 1D photonic crystal," Opt. Commun. 259, 700-703 (2006).
[CrossRef]

D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
[CrossRef]

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

2005 (7)

H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005).
[CrossRef]

R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005).
[CrossRef]

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

B. Bellini, J.-F. Larchanché, J.-P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005).
[CrossRef] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

2004 (5)

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

D. Gerace and L.C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004).
[CrossRef]

G.P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004).
[CrossRef]

R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004).
[CrossRef]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

2003 (3)

R. Ferrini, R. Houdré, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

2002 (3)

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[CrossRef]

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

2001 (1)

2000 (1)

E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000).
[CrossRef]

Agio, M.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Akahane, Y.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Anand, S.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

Andreani, L.C.

D. Gerace and L.C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004).
[CrossRef]

Asano, T.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Astrova, E.V.

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Baets, R.

H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Beccherelli, R.

R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005).
[CrossRef]

B. Bellini, J.-F. Larchanché, J.-P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005).
[CrossRef] [PubMed]

Beckx, S.

Bellini, B.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

B. Bellini, J.-F. Larchanché, J.-P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005).
[CrossRef] [PubMed]

Benisty, H.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

R. Ferrini, R. Houdré, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003).
[CrossRef]

Bennis, N.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Berenschot, E.

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

Bertolotti, M.

M. Bertolotti, "Wave interactions in photonic band structures: an overview," J. Opt. A: Pure Appl. Opt. 8, S9-S32 (2006).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Bogaerts, W.

Brown, C. V.

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[CrossRef]

Ctyroký, J.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

d’Alessandro, A.

R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005).
[CrossRef]

B. Bellini, J.-F. Larchanché, J.-P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005).
[CrossRef] [PubMed]

Dabrowski, R.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Day, S. E.

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

De La Rue, R.M.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

De Ridder, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

de Ridder, R.M.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

De Stefano, L.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Decoster, D.

Della Corte, F.G.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Deng, H. F.

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

Desmet, H.

H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005).
[CrossRef]

Driessen, A.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Duan, G.-H.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Dumon, P.

Dunbar, L. A.

Elston, S. J.

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[CrossRef]

E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000).
[CrossRef]

Elwenspoek, M.

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

Fernandez, F. A.

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

Ferrini, R.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

R. Ferrini, R. Houdré, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003).
[CrossRef]

Geday, M.A.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Gerace, D.

D. Gerace and L.C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004).
[CrossRef]

Hammer, M.

D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
[CrossRef]

Haneveld, J.

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

Helfert, S.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Hoekstra, H.J.W.M.

D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
[CrossRef]

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Hopman, W.C.L.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Houdré, R.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

R. Ferrini, R. Houdré, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003).
[CrossRef]

Hugonin, J.-P.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

James, R.

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

Jansen, H.

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

Joannopoulos, J.D.

Johnson, S.G.

Klaasse, G.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Kosmidou, E.P.

E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

Krauss, T. F.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Kriezis, E. E.

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[CrossRef]

E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000).
[CrossRef]

Kriezis, E.E.

E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

Lalanne, P.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Lambeck, P.V.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Larchanché, J.-F.

Lin, W.

Luyssert, B.

Malecki, K.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Manolis, I.G.

R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005).
[CrossRef]

Marpaung, D.A.I.

D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
[CrossRef]

Martz, J.

Merzlikin, A.M.

A.M. Merzlikin and A.P. Vinogradov, "Superprism effect in 1D photonic crystal," Opt. Commun. 259, 700-703 (2006).
[CrossRef]

Moore, R.A.

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Moosburger, J.

Moretti, L.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Mulot, M.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

Neyts, K.

H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005).
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Olivier, S.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Otón, J.M.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Ozaki, M.

R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004).
[CrossRef]

Ozaki, R.

R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004).
[CrossRef]

Perova, T.S.

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Petrácek, J.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Pilyugina, J.A.

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Potier, P.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Pregla, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Qiu, M.

Quintana, X.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Rendina, I.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Rossi, M.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Rotiroti, L.

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Schwoob, E.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Smith, C. J. M.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

Song, B.-S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Spadlo, A.

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Stoffer, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

Taillaert, D.

Talneau, A.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Tas, N.

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

Tolmachev, V.A.

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Trwoga, P.

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

Tsiboukis, T.D.

E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

Van Campenhout, J.

van Lith, J.

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Van Thourhout, D.

Vij, J.K.

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Vilcot, J.-P.

Vinogradov, A.P.

A.M. Merzlikin and A.P. Vinogradov, "Superprism effect in 1D photonic crystal," Opt. Commun. 259, 700-703 (2006).
[CrossRef]

Wang, G.P.

Weisbuch, C.

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Wiaux, V.

Wild, B.

R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006).
[CrossRef] [PubMed]

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

Yi, Y.

Yoshino, K.

R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004).
[CrossRef]

Yudistira, D.

D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
[CrossRef]

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

Zabelin, V.

Zuppiroli, L.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).
[CrossRef]

J. Appl. Phys. (2)

C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002).
[CrossRef]

H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Bertolotti, "Wave interactions in photonic band structures: an overview," J. Opt. A: Pure Appl. Opt. 8, S9-S32 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jap. J. Appl. Phys. (2)

R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004).
[CrossRef]

"Photonic crystals and related photonic nanostructures," Jap. J. Appl. Phys. 45, Part 1 (8A) (2006).

Mol. Cryst. Liq. Cryst (1)

R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).
[CrossRef]

Opt. Commun. (2)

E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000).
[CrossRef]

A.M. Merzlikin and A.P. Vinogradov, "Superprism effect in 1D photonic crystal," Opt. Commun. 259, 700-703 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005).
[CrossRef]

Opt. Quantum Electron. (2)

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
[CrossRef]

D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006).
[CrossRef]

Phys. Rev. E (1)

D. Gerace and L.C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004).
[CrossRef]

Proc. SPIE (1)

C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
[CrossRef]

Rev. (1)

B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
[CrossRef]

Sens. Actuators B (1)

L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
[CrossRef]

Other (5)

A. Muravsky, "Photo-induced alignment technology for 3-D surface profiles of LCD substrates", Proc. LCP Conference (2006).

I. W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals," (Taylor & Francis, April 2004).

E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal directional couplers," J. Appl. Phys. 100, 043118 (2006).
[CrossRef]

SOITEC website: http://www.soitec.com.

A.S. Holmes, "Microengineering: the next revolution?," available on: http://www3.imperial.ac.uk/portal/pls/portallive/docs/1/185938.PDF

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Atomic force microscope picture of an etched silicon rib; height is 200 nm and the base width is 800 nm. The inset shows the transverse profile.

Fig. 2.
Fig. 2.

One-dimensional photonic crystal based on (a) vertical walls, and (b) a grooved structure with slanted walls inclined at 54.7°, resulting from anisotropic wet etching of (100) silicon. The thickness h of the silicon slab is 220 nm.

Fig. 3.
Fig. 3.

Nematic director tuning in a triangular groove etched in silicon: (a) structural layout, and (b) distribution of the tilt angle (θ) under the application of an electric field for E=21, 27, and 33 V/μm.

Fig. 4.
Fig. 4.

One-dimensional photonic crystal design based on SOI etched grooves. The thicknesses of the silicon slab and the SiO2 substrate are h=220 nm and hsub =1μm, respectively; the parameters w 1 and w 2 equal 370 and 50 nm, and the photonic crystal period is d=w 1+w 2=420 nm. The grooves are infiltrated with a nematic LC material which also forms a residual overlayer of thickness hsup

Fig. 5.
Fig. 5.

Nematic director tuning in a trapezoidal groove etched in Si: (a) structural layout, and (b) distribution of the tilt angle (θ) under the application of an electric field for E=5, 9, and 18 V/μm, for an overlayer thickness of hsup =0.5μm.

Fig. 6.
Fig. 6.

Average tilt angle (θav ) over the groove’s cross-section for the structures shown in Figs. 3(a) and 5(a), in terms of: (a) applied field intensity and (b) dropped voltage.

Fig. 7.
Fig. 7.

Band-edge tuning for different values of electric field intensity, for the structure shown in Fig. 4. The LC overlayer thickness is zero and the refractive index of the glass slide equals 1.45.

Fig. 8.
Fig. 8.

Band-edge tuning for a constant value of voltage drop (ΔV=5V) for different values of the thickness of the residual LC overlayer, for the PhC structure of Fig. 4.

Fig. 9.
Fig. 9.

Band-edge tuning comparison between calculations invoked for realistic nematic director profiles such as those depicted in Fig. 5, and constant tilt angles corresponding to the averaged angle (θav ) of these profiles.

Fig. 10.
Fig. 10.

Mapping of the bandgap response to an equivalent isotropic index filling the grooves for different realistic nematic director patterns and corresponding results when considering a constant tilt angle equal to the average value.

Fig. 11.
Fig. 11.

Refractive index sensor based on the design of Fig. 4. The grooves as well as the superstrate region is covered by the measurand fluid characterized by an index of ns . Other parameters follow the values mentioned in Fig. 4.

Fig. 12.
Fig. 12.

Sensitivity of the power transmission coefficient of the proposed one-dimensional photonic crystal slab: (a) transmission curves as a function of the superstrate (measurand fluid) refractive index and (b) transmission versus the change in the superstrate index (ns ) calculated at 1579 nm, and (inset) dependance of the associated sensibility S over ns .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = 1 P P n s ,

Metrics