Abstract

We report the spectral characteristics of CO2-laser inscribed long-period gratings (LPGs) in endlessly single mode photonic crystal fiber (PCF) subject to macro-bending. The coupling modes as a result of bending were studied by examining the shifts of resonant wavelengths, the splits of attenuation bands, and the variation in coupling strength of the transmission spectra. A bending coefficient of ~ 27.9 nm∙m was determined in the PCF at 180° rotational orientation relative to the point of laser inscription in the curvature range from 2.6 m-1 to 3.5 m-1. Compared with conventional fiber LPGs fabricated using the same method, the PCF-based LPGs possess higher sensitivity both to bending and orientation, making them promising for sensor applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett.,  22,961-963, (1997).
    [CrossRef]
  3. B. Culshaw, "Optical fiber sensor technologies: opportunities and-perhaps-pitfalls," J. Lightwave Technol. 22,39-50 (2004).
    [CrossRef]
  4. U. Willer, C. Bohling, and W. Schade, "Using laser spectroscopy and fiber optic sensors to monitor volcanoes," Opt. Photon. News 15,18-23 (2004).
  5. T. Allsop, T. E. Gound, D. J. Webb, and I. Bennion, "Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring," J. Biomed. Opt. 8,552-558 (2003).
    [CrossRef] [PubMed]
  6. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
    [CrossRef]
  7. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  8. K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22,625-630 (2004).
    [CrossRef]
  9. J. K. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
    [CrossRef] [PubMed]
  10. H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber," Opt. Commun. 260,184-191 (2006).
    [CrossRef]
  11. R. T. Bise and D. Trevor, "Solgel-Derived Microstructured Fibers: Fabrication and Characterization," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OWL6.
    [PubMed]
  12. Y. Zhu, P. Shum, J. H. Chong, M. K. Rao, and C. Lu, "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Opt. Lett. 28,2467-2469 (2003).
    [CrossRef] [PubMed]
  13. G. M. VanWiggeren. T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fiber gratings," Electron. Lett. 36,1354-1355 (2000).
    [CrossRef]
  14. K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 14,58-65 (1996).
  15. M. Nielsen and N. Mortensen, "Photonic crystal fiber design based on the V-parameter," Opt. Express 11, 2762-2768 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-21-2762.
    [CrossRef] [PubMed]
  16. G. Rego, O. V. Ivano, and P. V. S. Marques, "Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings," Opt. Express 14, 9594-9599 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9594.
    [CrossRef] [PubMed]
  17. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15,1277-1294 (1997).
    [CrossRef]
  18. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fiber," J. Lightwave Technol. 18,1084-1100 (2000).
    [CrossRef]
  19. K. L. Reichenbach and C. Xu, "Independent core propagation in two-core photonic crystal fibers resulting from structural nonuniformities," Opt. Express 13,10336-10348 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10336.
    [CrossRef] [PubMed]
  20. M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
    [CrossRef]
  21. Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
    [CrossRef]
  22. U. L. Block, V. Dangui, M. J. F. Digonnet, and M. M. Fejer, "Origin of apparent resonance mode splitting in bent long-period fiber gratings," J. Lightwave Technol. 24,1027-1034 (2006).
    [CrossRef]

2006 (4)

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber," Opt. Commun. 260,184-191 (2006).
[CrossRef]

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

U. L. Block, V. Dangui, M. J. F. Digonnet, and M. M. Fejer, "Origin of apparent resonance mode splitting in bent long-period fiber gratings," J. Lightwave Technol. 24,1027-1034 (2006).
[CrossRef]

G. Rego, O. V. Ivano, and P. V. S. Marques, "Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings," Opt. Express 14, 9594-9599 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9594.
[CrossRef] [PubMed]

2005 (1)

2004 (4)

2003 (3)

2002 (1)

2001 (1)

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

2000 (2)

G. M. VanWiggeren. T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fiber gratings," Electron. Lett. 36,1354-1355 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fiber," J. Lightwave Technol. 18,1084-1100 (2000).
[CrossRef]

1999 (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

1997 (2)

1996 (2)

K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 14,58-65 (1996).

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Allsop, T.

T. Allsop, T. E. Gound, D. J. Webb, and I. Bennion, "Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring," J. Biomed. Opt. 8,552-558 (2003).
[CrossRef] [PubMed]

Antkowiak, M.

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Bennion, I.

T. Allsop, T. E. Gound, D. J. Webb, and I. Bennion, "Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring," J. Biomed. Opt. 8,552-558 (2003).
[CrossRef] [PubMed]

Berghmans, F.

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

Bhatia, V.

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Birks, T. A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Block, U. L.

Bohling, C.

U. Willer, C. Bohling, and W. Schade, "Using laser spectroscopy and fiber optic sensors to monitor volcanoes," Opt. Photon. News 15,18-23 (2004).

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Burdge, G. L.

Chong, J. H.

Chung, Y.

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

Culshaw, B.

Dangui, V.

Digonnet, M. J. F.

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber," Opt. Commun. 260,184-191 (2006).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15,1277-1294 (1997).
[CrossRef]

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Fejer, M. M.

Gound, T. E.

T. Allsop, T. E. Gound, D. J. Webb, and I. Bennion, "Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring," J. Biomed. Opt. 8,552-558 (2003).
[CrossRef] [PubMed]

Han, W.-T.

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

Han, Y.-G.

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

Ivano, O. V.

Judkins, J. B.

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Kakarantzas, G.

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber," Opt. Commun. 260,184-191 (2006).
[CrossRef]

Kerbage, C.

Kim, J. C.

Knight, J. C.

Koshiba, M.

K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 14,58-65 (1996).

Kotynski, R.

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

Lee, B. H.

J. K. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004).
[CrossRef] [PubMed]

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

Lee, K. S.

Lemaire, P. J.

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Lim, J. K. H.

Lu, C.

Marques, P. V. S.

Miyake, Y.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Morishita, K.

Mortensen, N.

Nielsen, M.

Paek, U.-C.

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

Panajotov, K.

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

Rao, M. K.

Rego, G.

Reichenbach, K. L.

Russell, P. St. J.

Saitoh, K.

K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 14,58-65 (1996).

Schade, W.

U. Willer, C. Bohling, and W. Schade, "Using laser spectroscopy and fiber optic sensors to monitor volcanoes," Opt. Photon. News 15,18-23 (2004).

Shum, P.

Sipe, J. E.

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Thienpont, H.

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

VanWiggeren, G. M.

G. M. VanWiggeren. T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fiber gratings," Electron. Lett. 36,1354-1355 (2000).
[CrossRef]

Vengsakar, A. N.

A. N. Vengsakar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14,58-65 (1996).
[CrossRef]

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber," Opt. Commun. 260,184-191 (2006).
[CrossRef]

T. Allsop, T. E. Gound, D. J. Webb, and I. Bennion, "Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring," J. Biomed. Opt. 8,552-558 (2003).
[CrossRef] [PubMed]

Westbrook, P. S.

White, C. A.

Willer, U.

U. Willer, C. Bohling, and W. Schade, "Using laser spectroscopy and fiber optic sensors to monitor volcanoes," Opt. Photon. News 15,18-23 (2004).

Windeler, R. S.

Xu, C.

Zhu, Y.

Electron. Lett. (1)

G. M. VanWiggeren. T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fiber gratings," Electron. Lett. 36,1354-1355 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, and Y. Chung, "Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications," IEEE Photon. Technol. Lett. 13,699-701 (2001).
[CrossRef]

J. Biomed. Opt. (1)

T. Allsop, T. E. Gound, D. J. Webb, and I. Bennion, "Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring," J. Biomed. Opt. 8,552-558 (2003).
[CrossRef] [PubMed]

J. Lightwave Technol. (7)

Opt. Commun. (1)

H. Dobb, K. Kalli, and D. J. Webb, "Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber," Opt. Commun. 260,184-191 (2006).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fiber: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999).
[CrossRef]

Opt. Lett. (4)

Opt. Photon. News (1)

U. Willer, C. Bohling, and W. Schade, "Using laser spectroscopy and fiber optic sensors to monitor volcanoes," Opt. Photon. News 15,18-23 (2004).

Opt. Quan. Electron. (1)

M. Antkowiak, R. Kotynski, K. Panajotov, F. Berghmans, and H. Thienpont, "Numerical, analysis of highly birefringent photonic crystal fibers with Bragg reflectors," Opt. Quan. Electron. 38,535-545 (2006).
[CrossRef]

Other (1)

R. T. Bise and D. Trevor, "Solgel-Derived Microstructured Fibers: Fabrication and Characterization," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OWL6.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the three-point bending setup (2L = 100 mm, d = 0 - 25.4 mm, wavelength region of broadband light source λ = 1450 - 1650 nm); (b) 0° orientation; (c) 180° orientation; (d) 90° orientation; (e) 270° orientation.

Fig. 2.
Fig. 2.

(a) Resonance evolution of the ESM-PCF-LPG transmission spectrum corresponding to different curvature at rotational orientation of 0°; (b) resonant wavelength shift and intensity change of the tested grating as bending curvature increases.

Fig. 3.
Fig. 3.

(a) Resonance evolution of ESM-PCF-LPG transmission spectrum corresponding to different curvature at rotational orientation of 90°, resonance splitting to occur at higher bending curvature; (b) resonant wavelength shift, and intensity change of the tested grating as bending curvature increases, insets: optical micrographs of an LPG section (left) and a cleaved cross-section of the fiber (right).

Fig. 4.
Fig. 4.

(a) Resonance evolution of ESM-PCF-LPG transmission spectrum corresponding to different curvature at rotational orientation of 180°, resonance splitting to occur at higher bending curvature; (b) resonant wavelength shift, and intensity change of the tested grating as the bending curvature increases, inset: evolution of two closed resonances at 1554 nm and 1603 nm for wavelength separation as a function of curvature.

Fig. 5.
Fig. 5.

Shift in resonant wavelength and change in intensity of SMF-28-LPG at rotational orientation of 0° and 180°, respectively, as bending curvature increases, inset: an optical micrograph of a section of SMF-28-LPG.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 R = 2 d ( d 2 + L 2 )
λ i = n core eff λ 0 n core n clad n clad ( i ) eff λ 0 n clad n ext Λ
λ i n clad = ( λ i n core eff n core eff n clad λ i n clad ( i ) eff n clad ( i ) eff n clad ) Λ
d λ i d ( 1 R ) = ( dn core eff ( 1 R ) d ( 1 R ) dn clad ( i ) eff ( 1 R ) d ( 1 R ) ) Λ

Metrics