Abstract

One of the major trends in optical fiber science is to be able to obtain fibers with large-mode-area (LMA), optimized for various applications such as high power delivery, fiber amplifiers, and fiber lasers. In order to ensure the high beam quality and the ultimate controllability of the damage threshold in the fiber’s material, it is required to have a LMA property and of course to operate in a single mode fashion. While the conventional fibers have some difficulties in providing simultaneously LMA, single mode operation, as well as low macro-bending loss characteristics, all-silica holey fibers are highly attractive candidates for realizing LMA single-mode fibers with low bending losses. In this paper, we present a novel type of effectively single-mode holey fibers with effective mode area of about 1400 μm2, small allowable bending radius as small as 5 cm, good beam quality factor of 1.15, and high confinement losses exceeding 1 dB/m for the higher-order mode at 1.064-μm wavelength.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  2. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003).
    [CrossRef] [PubMed]
  3. W. S. Wong, X. Peng, J. M. McLaughlim, L. Dong, "Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers," Opt. Lett. 30, 2855-2857 (2005).
    [CrossRef] [PubMed]
  4. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, and A. Tünnermann, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006).
    [CrossRef] [PubMed]
  5. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultralarge modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  6. P. Weßels and C. Fallnich, "Highly sensitive beam quality measurements on large-mode-area fiber amplifiers," Opt. Express 11, 3346-3351 (2003).
  7. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express 12, 1775-1779 (2004).
    [CrossRef] [PubMed]
  8. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  9. T. Hasegawa, T. Saitoh, D. Nishioka, E. Sasaoka, and T. Hosoya, European Conference on Optical Communications, We2.7.3 (2003).
  10. J. Fini, "Design of solid and microstructure fibers for suppression of higher-order modes," Opt. Express 13, 3477-3490 (2005).
    [CrossRef] [PubMed]
  11. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
    [CrossRef] [PubMed]
  12. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005).
    [CrossRef] [PubMed]
  13. A. Mafi and J. V. Moloney, "Beam quality of Photonic-crystal fibers," IEEE J. Lightwave Technol. 23, 2267-2270 (2005).
    [CrossRef]
  14. K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," IEEE J. Lightwave Technol. 19, 405-413 (2001).
    [CrossRef]

2006 (3)

2005 (4)

2004 (1)

2003 (2)

2002 (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

2001 (1)

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," IEEE J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Albertsen, M.

Birks, T. A.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Bjarklev, A.

Bonacinni, D.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

deSandre, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Dimarcello, F. V.

Dong, L.

Fallnich, C.

Fini, J.

Florous, N. J.

Folkenberg, J. R.

Ghalmi, S.

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Koshiba, M.

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," IEEE J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

Limpert, J.

Mafi, A.

A. Mafi and J. V. Moloney, "Beam quality of Photonic-crystal fibers," IEEE J. Lightwave Technol. 23, 2267-2270 (2005).
[CrossRef]

McLaughlim, J. M.

Moloney, J. V.

A. Mafi and J. V. Moloney, "Beam quality of Photonic-crystal fibers," IEEE J. Lightwave Technol. 23, 2267-2270 (2005).
[CrossRef]

Monberg, E.

Mortensen, N. A.

Murao, T.

Nicholson, J. W.

Nielsen, M. D.

Nolte, S.

Peng, X.

Ramachandran, S.

Röser, F.

Rothhardt, J.

Saitoh, K.

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006).
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," IEEE J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

Schmidt, O.

Schreiber, T.

St. Russell, P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Tsuchida, Y.

Tunnermann, A.

Tünnermann, A.

Weßels, P.

Wisk, P.

Wong, W. S.

Yan, M. F.

Zellmer, H.

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. deSandre, "Large mode area photonic crystal fiber," Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEEE J. Lightwave Technol. (2)

A. Mafi and J. V. Moloney, "Beam quality of Photonic-crystal fibers," IEEE J. Lightwave Technol. 23, 2267-2270 (2005).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," IEEE J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Other (1)

T. Hasegawa, T. Saitoh, D. Nishioka, E. Sasaoka, and T. Hosoya, European Conference on Optical Communications, We2.7.3 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic representations of holey fibers of (a) one air hole missing type, (b) seven air hole missing type, (c) seven air hole missing type with the different diameters d 1 and d 2, and (d) seven air hole missing type with ring core region.

Fig. 2.
Fig. 2.

Effective mode area of the fundamental mode at λ=1.064 μm mapped into the range of the design parameters d/Λ and Λ for HF1.

Fig. 3.
Fig. 3.

Effective mode area of the fundamental mode at λ=1.064 μm mapped into the range of the design parameters d/Λ and Λ for HF7-1.

Fig. 4.
Fig. 4.

Dependence of the normalized confinement losses of the higher-order mode L 2nd Λ on the value of d 2/Λ for different values of d 1/Λ by using HF7-2.

Fig. 5.
Fig. 5.

Optical field distributions at λ =1.064 μm for (a) the HOM in the central core, (b) the HOM in the ring core, (c) the HOM in the coupled fiber structure, and (d) the fundamental mode in the coupled fiber structure.

Fig. 6.
Fig. 6.

Wavelength dependence of the confinement losses of the higher-order mode L 2nd for the HF7-3 (Λ= 20 μm, d 1/Λ = 0.95, d 2/Λ= 0.51, and d/Λ=0.451).

Fig. 7.
Fig. 7.

Bending losses in dB/m, as a function of the bending radius in cm, at 1.064-μm wavelength. The red curve corresponds to the HF7-3 type of fiber, while the blue and green curves correspond to the HF1 and HF7-1, respectively.

Fig. 8.
Fig. 8.

Optical field distribution in curved HF7-3 with bending radius of (a) 30 cm, (b) 20 cm, and (c) 10 cm at 1.064-μm wavelength.

Fig. 9.
Fig. 9.

Dependence of the phase matching wavelength between the HOM in the central core and that in the ring-core as a function of the bending radius.

Fig. 10.
Fig. 10.

Dependence of the Aeff (red curve and right axis) and L 2nd (blue curve and left axis) on the value of (a) Λ, (b) d 1/Λ, (c) d 2/Λ, and (d) d/Λ, at 1.064-μm wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( s E 2 dxdy ) 2 s E 4 dxdy ,
W x 2 ( z ) W x 2 ( z 0 ) = M x 4 ( λ π W x ( z 0 ) ) 2 ( z z 0 ) 2 ,
W x 2 = 4 x 2 I ( x , y ) dxdy ,

Metrics