Abstract

We investigate the dependence of the speed of recovery of optically excited semiconductor optical amplifiers (SOAs) on the active region dimensions. We use a picosecond pump-probe arrangement to experimentally measure and compare the gain and phase dynamics of four SOAs with varying active region dimensions. A sophisticated time domain SOA model incorporating amplified spontaneous emission (ASE) agrees well with the measurements and shows that, in the absence of a continuous wave (CW) beam, the ASE plays a similar role to such a holding beam. The experimental results are shown to be consistent with a recovery rate which is inversely proportional to the optical area. A significant speed increase is predicted for an appropriate choice of active region dimensions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
    [Crossref] [PubMed]
  2. J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130
  3. R.J. Manning, X. Yang, R.P. Webb, and R. Giller, “The ⟪turbo-switch⟫ - a novel technique to increase the highspeed response of SOAs for wavelength conversion,” in Proceedings of OFC (Anaheim, Calif.2006), OWS8
  4. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
    [Crossref]
  5. R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
    [Crossref]
  6. B. Sartorius, “3R All-optical signal regeneration,” in Proceedings ECOC (Netherlands, 2001), Tu.M.3.1
  7. K.L. Hall and K.A. Rauschenbach, “100 Gbit/s bitwise logic,” Opt. Lett. 23,1271–1273 (1998)
    [Crossref]
  8. R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
    [Crossref]
  9. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28
  10. B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
    [Crossref]
  11. F. Ginovart, J.C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199,111–115 (2001)
    [Crossref]
  12. G. Talli and M.J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” J. Quantum. Electron. 39,1305–1313 (2003)
    [Crossref]
  13. J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
    [Crossref]
  14. M. Eiselt, W. Pieper, and H.G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave. Technol. 13,2099–2112 (1995)
    [Crossref]
  15. Dr. T. Kelly, Amphotonix Ltd, Private communication
  16. R. Giller, R.J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” Photon. Technol. Lett. 18,1061–1063 (2006)
    [Crossref]
  17. K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
    [Crossref]
  18. J.A. Kash, J.C. Tsang, and J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett. 54,2151–2154 (1985)
    [Crossref] [PubMed]
  19. J. Mork and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13,1803–1816 (1996)
    [Crossref]
  20. X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
    [Crossref]
  21. G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
    [Crossref]
  22. R.J. Manning and D.A.O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett 19,889–891 (1994)
    [Crossref] [PubMed]
  23. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
    [Crossref]
  24. F. Ginovart and J.C. Simon, “Semiconductor optical amplifier length effects on gain dynamics”, J. Phys. D: Appl. Phys. 36,1473–1476 (2003)
    [Crossref]
  25. L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
    [Crossref]
  26. M.J. Adams, An introduction to optical waveguides (J. Wiley1981)
  27. T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
    [Crossref]

2006 (3)

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

R. Giller, R.J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” Photon. Technol. Lett. 18,1061–1063 (2006)
[Crossref]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

2005 (2)

R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
[Crossref]

X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
[Crossref]

2003 (3)

G. Talli and M.J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” J. Quantum. Electron. 39,1305–1313 (2003)
[Crossref]

F. Ginovart and J.C. Simon, “Semiconductor optical amplifier length effects on gain dynamics”, J. Phys. D: Appl. Phys. 36,1473–1476 (2003)
[Crossref]

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

2001 (1)

F. Ginovart, J.C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199,111–115 (2001)
[Crossref]

1999 (2)

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

1998 (2)

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

K.L. Hall and K.A. Rauschenbach, “100 Gbit/s bitwise logic,” Opt. Lett. 23,1271–1273 (1998)
[Crossref]

1997 (1)

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

1996 (1)

1995 (1)

M. Eiselt, W. Pieper, and H.G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave. Technol. 13,2099–2112 (1995)
[Crossref]

1994 (2)

K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
[Crossref]

R.J. Manning and D.A.O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett 19,889–891 (1994)
[Crossref] [PubMed]

1993 (1)

J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
[Crossref]

1989 (1)

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

1985 (1)

J.A. Kash, J.C. Tsang, and J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett. 54,2151–2154 (1985)
[Crossref] [PubMed]

Adams, M.J.

X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
[Crossref]

G. Talli and M.J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” J. Quantum. Electron. 39,1305–1313 (2003)
[Crossref]

M.J. Adams, An introduction to optical waveguides (J. Wiley1981)

Alexandropoulos, D.

X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
[Crossref]

Bennion, I.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Besse, P.A.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Blow, K.J.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Bouchoule, S.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Bridges, T. J.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Burrus, C. A.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Burrus, C.A.

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Caraccia-Gross, M.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Cotter, D.

R. Giller, R.J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” Photon. Technol. Lett. 18,1061–1063 (2006)
[Crossref]

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Dagens, B.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Darwish, A.M.

K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
[Crossref]

Davies, D.A.O.

R.J. Manning and D.A.O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett 19,889–891 (1994)
[Crossref] [PubMed]

de Waardt, H.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Dorren, H.J.S.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Dreyer, K.

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Duelk, M.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Eiselt, M.

M. Eiselt, W. Pieper, and H.G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave. Technol. 13,2099–2112 (1995)
[Crossref]

Eisenstein, G.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Ellis, A.D.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Gaborit, F.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Gamper, E.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Giller, R.

R. Giller, R.J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” Photon. Technol. Lett. 18,1061–1063 (2006)
[Crossref]

R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
[Crossref]

R.J. Manning, X. Yang, R.P. Webb, and R. Giller, “The ⟪turbo-switch⟫ - a novel technique to increase the highspeed response of SOAs for wavelength conversion,” in Proceedings of OFC (Anaheim, Calif.2006), OWS8

Gini, E.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Ginovart, F.

F. Ginovart and J.C. Simon, “Semiconductor optical amplifier length effects on gain dynamics”, J. Phys. D: Appl. Phys. 36,1473–1476 (2003)
[Crossref]

F. Ginovart, J.C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199,111–115 (2001)
[Crossref]

Glesk, I.

J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
[Crossref]

Guekos, G.

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

Guillemot, I.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Hall, K.L.

K.L. Hall and K.A. Rauschenbach, “100 Gbit/s bitwise logic,” Opt. Lett. 23,1271–1273 (1998)
[Crossref]

K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
[Crossref]

Hansen, P. B.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Hess, R.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Hvam, J.M.

J.A. Kash, J.C. Tsang, and J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett. 54,2151–2154 (1985)
[Crossref] [PubMed]

Ippen, E.P.

K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
[Crossref]

Ito, T.

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

Janz, C.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Jaques, J.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Jepsen, K.S.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Johnson, B. C.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Joyner, C.H.

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Kane, M.

J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
[Crossref]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Kash, J.A.

J.A. Kash, J.C. Tsang, and J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett. 54,2151–2154 (1985)
[Crossref] [PubMed]

Kelly, A.E.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Kelly, Dr. T.

Dr. T. Kelly, Amphotonix Ltd, Private communication

Khoe, G.D.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Kishi, K.

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

Kondo, Y.

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

Koonen, M.J.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Lealman, I.F.

X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
[Crossref]

Leclerc, D.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Lenz, G.

K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
[Crossref]

Leuthold, J.

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Li, X.

X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
[Crossref]

Li, Z.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Liu, Y.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Magari, K.

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

Manning, R.J.

R. Giller, R.J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” Photon. Technol. Lett. 18,1061–1063 (2006)
[Crossref]

R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
[Crossref]

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

R.J. Manning and D.A.O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett 19,889–891 (1994)
[Crossref] [PubMed]

R.J. Manning, X. Yang, R.P. Webb, and R. Giller, “The ⟪turbo-switch⟫ - a novel technique to increase the highspeed response of SOAs for wavelength conversion,” in Proceedings of OFC (Anaheim, Calif.2006), OWS8

Mecozzi, A.

Melchior, H.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Mikkelsen, B.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Miller, B.I.

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Mork, J.

Nesset, D.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Nielson, D.T.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Occhi, L.

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

Ottenwalder, D.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Phillips, I.D.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Pieper, W.

M. Eiselt, W. Pieper, and H.G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave. Technol. 13,2099–2112 (1995)
[Crossref]

Pleumeekers, J.L.

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Poingt, F.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Poustie, A.J.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Prucnal, P.R.

J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
[Crossref]

Rauschenbach, K.A.

Raybon, G.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

Rogers, D.C.

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Sartorius, B.

B. Sartorius, “3R All-optical signal regeneration,” in Proceedings ECOC (Netherlands, 2001), Tu.M.3.1

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Schares, L.

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

Schmidt, C.

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

Schubert, C.

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

Shu, X.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Simon, J.C.

F. Ginovart and J.C. Simon, “Semiconductor optical amplifier length effects on gain dynamics”, J. Phys. D: Appl. Phys. 36,1473–1476 (2003)
[Crossref]

F. Ginovart, J.C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199,111–115 (2001)
[Crossref]

Sokoloff, J.P.

J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
[Crossref]

Storz, F. G.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Stubkjaer, K.E.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Talli, G.

G. Talli and M.J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” J. Quantum. Electron. 39,1305–1313 (2003)
[Crossref]

Tangdiongga, E.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

Tsang, J.C.

J.A. Kash, J.C. Tsang, and J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett. 54,2151–2154 (1985)
[Crossref] [PubMed]

Tucker, R. S.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Vaa, M.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Valiente, I.

F. Ginovart, J.C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199,111–115 (2001)
[Crossref]

Verdrager, V.

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

Vogt, W.

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

Waardt, H. de

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

Webb, R.P.

R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
[Crossref]

R.J. Manning, X. Yang, R.P. Webb, and R. Giller, “The ⟪turbo-switch⟫ - a novel technique to increase the highspeed response of SOAs for wavelength conversion,” in Proceedings of OFC (Anaheim, Calif.2006), OWS8

Weber, H.G.

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

M. Eiselt, W. Pieper, and H.G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave. Technol. 13,2099–2112 (1995)
[Crossref]

Wiesenfeld, J. M.

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Yang, X.

R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
[Crossref]

R.J. Manning, X. Yang, R.P. Webb, and R. Giller, “The ⟪turbo-switch⟫ - a novel technique to increase the highspeed response of SOAs for wavelength conversion,” in Proceedings of OFC (Anaheim, Calif.2006), OWS8

Yoshimoto, N.

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

Zhang, S.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

App. Phys. Lett (1)

G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, “Gain recovery time of traveling-wave semiconductor optical amplifiers,” App. Phys. Lett 54,454–456 (1989)
[Crossref]

Electron. Lett. (3)

T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, “Extremely low power consumption semiconductor optical amplifier gate for WDM applications,” Electron. Lett. 33,1791–1792 (1997)
[Crossref]

J. Leuthold, C.H. Joyner, B. Mikkelsen, G. Raybon, J.L. Pleumeekers, B.I. Miller, K. Dreyer, and C.A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36,1129–1130

R.P. Webb, R.J. Manning, X. Yang, and R. Giller, “All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers,” Electron. Lett. 41,1396–1397 (2005)
[Crossref]

J. Lightwave. Technol. (2)

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave. Technol. 24,230–236 (2006)
[Crossref]

M. Eiselt, W. Pieper, and H.G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave. Technol. 13,2099–2112 (1995)
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

F. Ginovart and J.C. Simon, “Semiconductor optical amplifier length effects on gain dynamics”, J. Phys. D: Appl. Phys. 36,1473–1476 (2003)
[Crossref]

J. Quantum. Electron. (2)

L. Schares, C. Schubert, C. Schmidt, H.G. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” J. Quantum. Electron. 39,1394–1408 (2003)
[Crossref]

G. Talli and M.J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” J. Quantum. Electron. 39,1305–1313 (2003)
[Crossref]

Opt. Commun. (2)

F. Ginovart, J.C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199,111–115 (2001)
[Crossref]

K.L. Hall, G. Lenz, A.M. Darwish, and E.P. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers,” Opt. Commun. 111,589–612 (1994)
[Crossref]

Opt. Lett (1)

R.J. Manning and D.A.O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett 19,889–891 (1994)
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Technol. Lett. (5)

R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, “All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer”, Photon. Technol. Lett. 10,165–157 (1998)
[Crossref]

B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, “Design optimization of all-active Mach-Zehnder wavelength converters,” Photon. Technol. Lett. 11,424–426 (1999)
[Crossref]

J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” Photon. Technol. Lett. 5787–790 (1993)
[Crossref]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D.T. Nielson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” Photon. Technol. Lett. 18,2323–2325 (2006)
[Crossref]

R. Giller, R.J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” Photon. Technol. Lett. 18,1061–1063 (2006)
[Crossref]

Phys. Rev. Lett. (1)

J.A. Kash, J.C. Tsang, and J.M. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett. 54,2151–2154 (1985)
[Crossref] [PubMed]

Proc. SPIE (1)

X. Li, D. Alexandropoulos, M.J. Adams, and I.F. Lealman, “Wavelength dependence of gain recovery time in semiconductor optical amplifiers,” in Proc. SPIE 5722,343–350 (2005)
[Crossref]

Science (1)

D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Phillips, A.J. Poustie, and D.C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286,1523–1528 (1999)
[Crossref] [PubMed]

Other (5)

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M.J. Koonen, G.D. Khoe, H.J.S. Dorren, X. Shu, and I. Bennion, “Error-free 320Gb/s SOA-based wavelength conversion using optical filtering,” in Proceedings of OFC (Anaheim, Calif.2006), PDP28

B. Sartorius, “3R All-optical signal regeneration,” in Proceedings ECOC (Netherlands, 2001), Tu.M.3.1

R.J. Manning, X. Yang, R.P. Webb, and R. Giller, “The ⟪turbo-switch⟫ - a novel technique to increase the highspeed response of SOAs for wavelength conversion,” in Proceedings of OFC (Anaheim, Calif.2006), OWS8

Dr. T. Kelly, Amphotonix Ltd, Private communication

M.J. Adams, An introduction to optical waveguides (J. Wiley1981)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Experimental pump-probe arrangement. TMLL: tunable mode-locked laser; EDFA: erbium doped fibre amplifier; BPF: band pass filter; VOA: variable optical attenuator; PC: polarization controller; R: reflected signal from the TOAD; T: transmitted signal.

Fig. 2.
Fig. 2.

(a) Typical normalized R (heavy line) and T (light line) co-efficients from pump-probe measurements; (b) typical normalized gain measured from amplitude modulation monitor.

Fig. 3.
Fig. 3.

(a) Normalised gain dynamics calculation (open squares) and fit (line); (b) phase dynamics calculation (open squares) and fit (line).

Fig. 4.
Fig. 4.

Band filling recovery time constant as a function of injection current for each SOA.

Fig. 5.
Fig. 5.

(a) Phase shift obtained from 1mm long, 0.1μm deep SOA as a function of pump pulse energy for different values of bias current (indicated in legend); (b) phase shift obtained from 1.8mm and 1mm long SOAs, both of cross-sectional area 0.2μm2 as a function of bias current.

Fig. 6.
Fig. 6.

Logarithmic plot of recovery time constant versus SOA current data (points) and numerical model fit (solid line) for each SOA. Length and depth parameters of the SOA are indicated in the upper and lower portions of each legend respectively.

Fig. 7.
Fig. 7.

Variation of the Γ/A ratio with active region width for a device of fixed depth.

Fig. 8.
Fig. 8.

Modelled recovery time constant as a function of active region width (points) and modelled area to confinement factor ratio (solid line) overlaid for comparison.

Fig. 9.
Fig. 9.

Γ/A ratio as a function of active region width for SOAs of differing depths.

Tables (1)

Tables Icon

Table 1. Set of parameters used in model calculations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G ( t ) = R ( t ) + T ( t ) d 2 k 2
ϕ ( t ) = cos 1 [ R ( t ) T ( t ) + ( d 2 k 2 ) ( d 2 k 2 G ( t ) ) 4 d 2 k 2 G ( t ) ]
G ( t ) = exp ( ae t τ bf + b ( 1 e t τ delay ) e t τ ch )
ϕ ( t ) = bf e t τ bf + ch ( 1 e t τ delay ) e t τ ch
1 τ bf = 1 τ Auger + 1 τ ASE
1 τ ASE = P ASE E SAT = Γ A gP ASE hv

Metrics