Abstract

We extend the model of Chance, Prock and Silbey[1] and analytically determine the Poynting vector in the direction perpendicular to the plane of a multilayer organic device. The result is used to predict the spatial profile of Förster energy transfer, the radiative output of an organic light emitting device, and to calculate the efficiency of surface plasmon polariton-mediated energy transfer across a thin silver film.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters

Samira Khadir, Mahmoud Chakaroun, Abderrahmane Belkhir, Alexis Fischer, Omar Lamrous, and Azzedine Boudrioua
Opt. Express 23(18) 23647-23659 (2015)

Surface plasmon-enhanced energy transfer in an organic light-emitting device structure

Ki Youl Yang, Kyung Cheol Choi, and Chi Won Ahn
Opt. Express 17(14) 11495-11504 (2009)

Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer

Siyka I. Shopova, Jay M. Cupps, Po Zhang, Edward P. Henderson, Scott Lacey, and Xudong Fan
Opt. Express 15(20) 12735-12742 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp.1–65.
  2. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
    [Crossref]
  3. M. H. Lu and J. C. Sturm, “External coupling efficiency in planar organic light-emitting devices,” Appl. Phys. Lett. 78,1927–1929 (2001).
    [Crossref]
  4. M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91,595–604 (2002).
    [Crossref]
  5. T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27,7–17 (1959).
  6. C.-T. Tai, Dyadic Green’s functions in electromagnetic theory (IEEE Press, 1994).
  7. R. L. Hartman, “Green dyadic calculations for inhomogeneous optical media,” J. Opt. Soc. Am. A 17,1067–1076 (2000).
    [Crossref]
  8. R. L. Hartman, S. M. Cohen, and P. T. Leung, “A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces,” J. Chem. Phys. 110,2189–2194 (1999).
    [Crossref]
  9. M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
    [Crossref]
  10. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306,1002–1005 (2004).
    [Crossref] [PubMed]
  11. P. Andrew and W. L. Barnes, “Forster energy transfer in an optical microcavity,” Science 290,785–788 (2000).
    [Crossref] [PubMed]
  12. D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
    [Crossref]
  13. D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
    [Crossref]
  14. H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
    [Crossref]
  15. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75,327–334 (2002).
    [Crossref] [PubMed]

2004 (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306,1002–1005 (2004).
[Crossref] [PubMed]

2003 (1)

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

2002 (3)

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91,595–604 (2002).
[Crossref]

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
[Crossref]

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75,327–334 (2002).
[Crossref] [PubMed]

2001 (1)

M. H. Lu and J. C. Sturm, “External coupling efficiency in planar organic light-emitting devices,” Appl. Phys. Lett. 78,1927–1929 (2001).
[Crossref]

2000 (2)

R. L. Hartman, “Green dyadic calculations for inhomogeneous optical media,” J. Opt. Soc. Am. A 17,1067–1076 (2000).
[Crossref]

P. Andrew and W. L. Barnes, “Forster energy transfer in an optical microcavity,” Science 290,785–788 (2000).
[Crossref] [PubMed]

1999 (2)

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

R. L. Hartman, S. M. Cohen, and P. T. Leung, “A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces,” J. Chem. Phys. 110,2189–2194 (1999).
[Crossref]

1998 (1)

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

1996 (1)

D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
[Crossref]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp.1–65.

1959 (1)

T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27,7–17 (1959).

Agranovich, V. M.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
[Crossref]

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306,1002–1005 (2004).
[Crossref] [PubMed]

P. Andrew and W. L. Barnes, “Forster energy transfer in an optical microcavity,” Science 290,785–788 (2000).
[Crossref] [PubMed]

Baldo, M. A.

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306,1002–1005 (2004).
[Crossref] [PubMed]

P. Andrew and W. L. Barnes, “Forster energy transfer in an optical microcavity,” Science 290,785–788 (2000).
[Crossref] [PubMed]

Basko, D. M.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
[Crossref]

Bassani, F.

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
[Crossref]

Bulovic, V.

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
[Crossref]

Burrows, P. E.

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
[Crossref]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp.1–65.

Cohen, S. M.

R. L. Hartman, S. M. Cohen, and P. T. Leung, “A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces,” J. Chem. Phys. 110,2189–2194 (1999).
[Crossref]

Forrest, S. R.

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
[Crossref]

Förster, T.

T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27,7–17 (1959).

Garbuzov, D. Z.

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
[Crossref]

Gu, G.

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

Hartman, R. L.

R. L. Hartman, “Green dyadic calculations for inhomogeneous optical media,” J. Opt. Soc. Am. A 17,1067–1076 (2000).
[Crossref]

R. L. Hartman, S. M. Cohen, and P. T. Leung, “A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces,” J. Chem. Phys. 110,2189–2194 (1999).
[Crossref]

Holmes, R. J.

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

Iizumi, Y.

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

Kafafi, Z. H.

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

Khalfin, V. B.

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

Kido, J.

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

Leung, P. T.

R. L. Hartman, S. M. Cohen, and P. T. Leung, “A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces,” J. Chem. Phys. 110,2189–2194 (1999).
[Crossref]

Lu, M. H.

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91,595–604 (2002).
[Crossref]

M. H. Lu and J. C. Sturm, “External coupling efficiency in planar organic light-emitting devices,” Appl. Phys. Lett. 78,1927–1929 (2001).
[Crossref]

Magde, D.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75,327–334 (2002).
[Crossref] [PubMed]

Mattoussi, H.

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

Merritt, C. D.

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

Murata, H.

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp.1–65.

Rocca, G. C. La

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
[Crossref]

Segal, M.

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

Seybold, P. G.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75,327–334 (2002).
[Crossref] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp.1–65.

Soos, Z. G.

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

Sturm, J. C.

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91,595–604 (2002).
[Crossref]

M. H. Lu and J. C. Sturm, “External coupling efficiency in planar organic light-emitting devices,” Appl. Phys. Lett. 78,1927–1929 (2001).
[Crossref]

Tai, C.-T.

C.-T. Tai, Dyadic Green’s functions in electromagnetic theory (IEEE Press, 1994).

Wong, R.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75,327–334 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. H. Lu and J. C. Sturm, “External coupling efficiency in planar organic light-emitting devices,” Appl. Phys. Lett. 78,1927–1929 (2001).
[Crossref]

Chem. Phys. Lett. (1)

D. Z. Garbuzov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films,” Chem. Phys. Lett. 249,433–437 (1996).
[Crossref]

Disc. Faraday Soc. (1)

T. Förster, “Transfer mechanisms of electronic excitation,” Disc. Faraday Soc. 27,7–17 (1959).

J. Appl. Phys. (2)

H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, and Z. H. Kafafi, “Photoluminescence quantum yield of pure and molecularly doped organic solid films,” J. Appl. Phys. 86,2642–2650 (1999).
[Crossref]

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91,595–604 (2002).
[Crossref]

J. Chem. Phys. (1)

R. L. Hartman, S. M. Cohen, and P. T. Leung, “A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces,” J. Chem. Phys. 110,2189–2194 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Photochem. Photobiol. (1)

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75,327–334 (2002).
[Crossref] [PubMed]

Phys. Rev. B (2)

M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Phys. Rev. B 68,075211 (2003).
[Crossref]

V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak Microcavity Effects in Organic Light Emitting Devices,” Phys. Rev. B 58,3730–3740 (1998).
[Crossref]

Physica Status Solidi A (1)

D. M. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Electronic energy transfer in a planar microcavity,” Physica Status Solidi A 190,379–382 (2002).
[Crossref]

Science (2)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306,1002–1005 (2004).
[Crossref] [PubMed]

P. Andrew and W. L. Barnes, “Forster energy transfer in an optical microcavity,” Science 290,785–788 (2000).
[Crossref] [PubMed]

Other (2)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near metal interfaces,” in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp.1–65.

C.-T. Tai, Dyadic Green’s functions in electromagnetic theory (IEEE Press, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Coefficients and indexing of the general multilayer structure used for the modeling.

Fig. 2.
Fig. 2.

(a) Förster energy transfer as a function of z position and normalized to the surface-parallel wavevector. The excited molecule is embedded within an infinite film of 1% CuPC in Alq3. The dipole is located at r = z = 0 and the emission wavelength is λ= 535 nm. Bright features correspond to a faster energy transfer. (b) The z dependence shows a 1/z 4 power law consistent with Eq. (22) and a Förster radius of R 0 = 38Å. At λ= 535 nm, the dielectric constants for CuPC and Alq3 are: ε= 1.908 + 0.265i and ε= 2.962, respectively.

Fig. 3.
Fig. 3.

(a). The structure and experimental setup of the OLED from Segal et al. (b) The detailed measurement setup for the outcoupling measurement.[9]

Fig. 4.
Fig. 4.

(a). Angular emission profile of the perpendicular dipoles of the OLED from Segal et al.[9] Each red or blue curve corresponds to the angular emission profile into air and into glass layer, respectively, for 10 different dipole positions spaced 20Å apart in the Alq3 layer. The curves with maxima at larger angles correspond to the dipoles nearer to the metal cathode. The green circle represents the ideal Lambertian emission profile. (b) Angular emission profile for the parallel dipoles. (c) Angular emission profile for the isotropic dipoles. Emission into air closely approximates the expected Lambertian profile.

Fig. 5.
Fig. 5.

(a). Absorption of the parallel dipole energy as a function of the position and normalized surface-parallel wavevector. The dipole is located at the middle of the Alq3 layer and the emission wavelength is λ = 535 nm. Bright features correspond to a higher absorption. The green curve shows the outcoupled energy flux. (b) Same as part (a) but for perpendicular dipole. Perpendicular dashed lines divide this flux into air-outcoupled, glass-waveguided, organics-waveguided and surface plasmon polariton (SPP) portions. At λ = 535 nm, the dielectric constants for Mg, BCP, Alq3, TPD, PEDOT and ITO are: ε = 1.908 + 0.265i, ε = 2.985 + (4.11 × 10-5)i, ε = 2.962, ε = 2.985 + (4.11 × 10-5)i, ε = 2.304 + (3.33 × 10-2)i and ε = 3.295 + (3.63 × 10-2)i, respectively. Note that the dielectric constant of TPD was assumed to be equal that of BCP.

Fig. 6.
Fig. 6.

(a). The calculated distribution of the Alq3 dipole energy versus the dipole distance from the BCP layer. (b) The basic structure and the emitting pathways of the OLED of Segal et al. [9]

Fig. 7.
Fig. 7.

(a). Absorption of the parallel dipole energy as a function of the position and normalized surface-parallel wavevector. The dipole is located at the middle of the PMMA:Alq3 layer and the emission wavelength is λ = 535 nm. The green and blue curves show the outcoupled energy flux from the PMMA:R6G-air and PMMA:Alq3-glass interfaces, respectively. The blue curve is rescaled by 1/2000 to share the same y-axis with the green curve. (b) Same as part (a) but for perpendicular dipole. Perpendicular dashed lines divide the flux into air-outcoupled and glass-waveguided portions. Dielectric constants for PMMA and R6G were extracted from Ref. [10].

Fig. 8.
Fig. 8.

(a). The calculated ratio of emitted power to the total dipole energy for the structure of Andrew and Barnes.[10] The data is shown for samples without the R6G acceptor (PMMA:Alq3/Ag/PMMA) (blue curve), samples without the Alq3 donor (PMMA/Ag/PMMA:R6G) (green curve) and samples containing both Alq3 and R6G (PMMA: Alq3/Ag/PMMA:R6G) (red curve). The silver layer thickness is 60 nm. The R6G absorption and PL spectra of R6G and Alq3 are extracted from Fig. 1(d) of Andrew and Barnes.[10] (b) The energy transfer efficiency, which is the ratio of the energy absorbed by the R6G-doped PMMA layer to the total Alq3 dipole energy, versus silver thickness.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

E ( R ) = i ω μ 0 G ( R R ) · J ( R ) d 3 R′
M n κ o e ( h ) = e ihz [ n J n ( κ r ) r sin cos n ϕ r ̂ J n ( κ r ) r cos sin n ϕ ϕ ̂ ]
N n κ o e ( h ) = e ihz k j [ ih J n ( κ r ) r cos sin n ϕ r ̂ inh J n ( κ r ) r sin cos n ϕ ϕ ̂ + κ 2 J n ( κ r ) cos sin n ϕ z ̂ ]
G 0 ( R R′ ) = i 4 π 0 d κ n = 0 t = e , o 2 δ n 0 κ h s [ M tnκ ( h s ) M tnκ ( h s ) + N tnκ ( h s ) N tnκ ( h s ) M tnκ ( h s ) M tnκ ( h s ) + N tnκ ( h s ) N tnκ ( h s ) ] z 0 z 0
G j ( R R ) = i 4 π 0 d κ n = 0 t = e , o 2 δ n 0 κ h s [ c j M tn κ ( h j ) M tn κ ( h s ) + f j N tn κ ( h j ) N tn κ ( h s )
+ c j M tn κ ( h j ) M tn κ ( h s ) + f j N t n κ ( h j ) N tn κ ( h s ) ]
c j e i h j z j + c j e i h j z j = c j + 1 e i h j + 1 z j + c j + 1 e i h j + 1 z j
h j k j ( f j e i h j z j + f j e i h j z j ) = h j + 1 k j + 1 ( f j + 1 e i h j + 1 z j + f j + 1 e i h j + 1 z j )
c j h j e i h j z j + c j h j e i h j z j = h j + 1 c j + 1 e i h j + 1 z j + h j + 1 c j + 1 e i h j + 1 z j
k j f j e i h j z j + k j f j e i h j z j = k j + 1 f j + 1 e i h j + 1 z j + k j + 1 f j + 1 e i h j + 1 z j
b = e 2 k s 3 6 πmωε [ 1 + 3 q ε 2 p 0 k s 3 Im ( E 0 ) ]
b b 0 = 1 q + q { 1 + 3 2 Re [ 0 d κ κ 3 h s k s 3 ( f s + f s ) ] }
b b 0 = 1 q + q { 1 + 3 4 Re [ 0 d κ κ h s k s ( c s + c s + h s 2 k s 2 ( f s f s ) ) ] }
. S d V = S . d A S z d A .
S z = i 2 μ 0 ω [ E r ( E r z E z r ) * + E ϕ ( E ϕ z 1 r E z ϕ ) * ]
E jr = ω 2 p 0 4 π d κ κ h j k s k j h s J 0 ( κ r ) r ( f j e i h j z f j e i h j z )
E jz = i ω 2 p 0 4 π d κ κ 3 h s k s k j J 0 ( κ r ) ( f j e i h j z + f j e i h j z )
E j r = i ω 2 p 0 4 π d κ [ 1 h s J 1 ( κ r ) r ( cos ϕ sin ϕ ) ( c j e i h j z + c j e i h j z )
+ h j k j k s J 1 ( κ r ) r ( cos ϕ + sin ϕ ) ( f j e i h j z f j e i h j z )
E j ϕ = i ω 2 p 0 4 π d κ [ 1 h s J 1 ( κ r ) r ( cos ϕ + sin ϕ ) ( c j e i h j z + c j e i h j z )
+ h j k j k s J 1 ( κ r ) r ( cos ϕ sin ϕ ) ( f j e i h j z f j e i h j z ) ]
E jz = i ω 2 p 0 4 π d κ κ 2 2 k s k j J 1 ( κ r ) ( cos ϕ + sin ϕ ) ( f j e i h j z + f j e i h j z )
Re ( S z , j * dA ) = 3 q 4 Re [ 0 du u 3 ( ε j ) * 1 u 2 ε j ( ε j ε s u 2 ) 1 2 ( f j e i h j z f j e i h j z ) ( f j e i h j z + f j e i h j z ) * ]
Re ( S z , j dA * ) = 3 q 8 Re [ 0 d u u ( ε j ) * ε j ( ε j ε s u 2 ) 1 2 ( f j e i h j z f j e i h j z ) ( f j e i h j z + f j e i h j z ) *
+ 0 d u u ( ( ε j ε s u 2 ) 1 2 ) * 1 u 2 ( c j e i h j z + c j e i h j z ) ( c j e i h j z c j e i h j z ) * ]
1 b 0 d u Re ( dA d S z , j , * dz ) = b ET ( z ) b 0 = 0 rdr 0 2 π d ϕ ρ R 0 6 ( r 2 + z 2 ) 3 = ρ π 2 R 0 6 z 4

Metrics