Abstract

We report on the propagation characteristics of a plasmonic waveguide structure based on two coupled rectangular wedges. Dispersion, propagation loss, and field distributions are investigated by three-dimensional finite-difference time-domain method. The considered structure supports only one supermode over 30THz bandwidth, and the calculated propagation loss at λ=1.55μm is 0.0257dB/μm, which is lower than the existing report by 1.7 times while keeping comparable field localizations. The all-planar structure in conjunction with the linearly dispersive characteristic over a wide operational bandwidth signifies its great potential for optical signal transporting in nanophotonic circuits.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Krenn, "Nanoparticle waveguide: watching energy transfer," Nat. Mater. 2, 210 (2003).
    [CrossRef] [PubMed]
  2. J. -C. Weeber,  et al., "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
    [CrossRef]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  5. S. A. Maier,  et al., "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  6. B. E. Sernelius, Surface modes in physics, 1st ed. (Wiley-VCH, Berlin, 2001).
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
    [CrossRef]
  8. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974).
    [CrossRef]
  9. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
    [CrossRef]
  10. K. Tananka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express 13, 256 (2005).
    [CrossRef]
  11. L. Chen, Ja. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133 (2006).
    [CrossRef] [PubMed]
  12. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001).
    [CrossRef]
  13. I. V. Novikov and A. A. Marardudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  14. D. F. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069 (2004).
    [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
    [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  17. D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186 (2005).
    [CrossRef] [PubMed]
  18. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004).
    [CrossRef] [PubMed]
  19. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991).
    [CrossRef]
  20. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
    [CrossRef]
  21. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
    [CrossRef] [PubMed]
  22. K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302 (1966).
    [CrossRef]
  23. R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
    [CrossRef]
  24. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr. L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, W," Appl. Opt. 24, 4493 (1985).
    [CrossRef] [PubMed]
  25. G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48, 637 (2000).
    [CrossRef]
  26. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 73241 (2006).
    [CrossRef]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 73241 (2006).
[CrossRef]

L. Chen, Ja. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

2005

2004

2003

J. R. Krenn, "Nanoparticle waveguide: watching energy transfer," Nat. Mater. 2, 210 (2003).
[CrossRef] [PubMed]

S. A. Maier,  et al., "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

2002

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

I. V. Novikov and A. A. Marardudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

2001

J. -C. Weeber,  et al., "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

2000

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48, 637 (2000).
[CrossRef]

1999

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

1998

1997

1991

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

1990

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

1985

1974

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974).
[CrossRef]

1966

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302 (1966).
[CrossRef]

Alexander, R. W.

Almeida, V. R.

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Barrios, C. A.

Bell, R. J.

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 73241 (2006).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Chen, L.

Deavux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Dereux, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

Ebbesen, W.

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Economou, E. N.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Fan, G. X.

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48, 637 (2000).
[CrossRef]

Fukui, M.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Garcia-Vidal, F. J.

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Gramotnev, D. K.

Haraguchi, M.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Hunsberger, F. P.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

Kobayashi, T.

Kourogi, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Krenn, J. R.

J. R. Krenn, "Nanoparticle waveguide: watching energy transfer," Nat. Mater. 2, 210 (2003).
[CrossRef] [PubMed]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Kunz, K.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Laluet, J. -Y

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Lipson, M.

Liu, Q. H.

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48, 637 (2000).
[CrossRef]

Luebbers, R.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

Maier, S. A.

S. A. Maier,  et al., "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Marardudin, A. A.

I. V. Novikov and A. A. Marardudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Martin-Moreno, L.

Moreno, E.

Morimoto, A.

Ngai, K. L.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A. A. Marardudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ohtsu, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Okamoto, T.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Ordal, M. A.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

Pfeiffer, C. A.

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974).
[CrossRef]

Pile, D. F.

Pile, D. F. P.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186 (2005).
[CrossRef] [PubMed]

Quinten, M.

Rodrigo, S. G.

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

Schneider, M.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

Standler, R.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

Sugiyama, T.

Takahara, J.

Taki, H.

Tanaka, M.

Tananka, K.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

Weeber, J. -C.

J. -C. Weeber,  et al., "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

Xu, Q.

Yamagishi, S.

Yatsui, T.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Yee, K. S.

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302 (1966).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Europhys. Lett.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

IEEE Trans. Antennas Propag.

K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302 (1966).
[CrossRef]

G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48, 637 (2000).
[CrossRef]

IEEE Trans. Electromag. Compat.

R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990).
[CrossRef]

J. Appl. Phys.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006).
[CrossRef]

Nat. Mater.

J. R. Krenn, "Nanoparticle waveguide: watching energy transfer," Nat. Mater. 2, 210 (2003).
[CrossRef] [PubMed]

S. A. Maier,  et al., "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. -C. Weeber,  et al., "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[CrossRef]

C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974).
[CrossRef]

I. V. Novikov and A. A. Marardudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Phys. Rev. Lett.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Other

B. E. Sernelius, Surface modes in physics, 1st ed. (Wiley-VCH, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The structure of the coupled semi-infinite rib plasmonic waveguide.

Fig. 2
Fig. 2

(a) Top view of the mesh layout, boundaries, and the orientation of the dipole excitation of the coupled rib plasmonic waveguides. (b) Cross-sectional view of the simulation arrangement.

Fig. 3.
Fig. 3.

Electric field distributions. (a)(b) Cross-section view of the Ey and the Ez component, respectively. (c)(d) Top view of the Ey and the Ez component, respectively. The excited wavelength is 1.55μm.

Fig. 4.
Fig. 4.

Modal effective indices and the corresponding propagation losses for the coupled plasmonic waveguides with various structural parameters. The excited wavelength is 1.55μm.

Fig. 5.
Fig. 5.

The dispersion relation of the coupled rib plasmonic waveguide

Fig. 6.
Fig. 6.

The loss spectrum of the coupled rib plasmonic waveguide

Metrics