Abstract

Microholographic data storage system model is presented that includes non-linear and non-local behavior of the storage material for accurate simulation of the system and optimization of the writing process. For the description of the photopolymer material a diffusion based nonlocal material model is used. The diffusion equation is solved numerically and the modulation of the dielectric constant is calculated. Diffraction efficiency of simulated microholograms and measurements were compared, and they show good agreement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
    [Crossref]
  2. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3,72–81 (2001)
    [Crossref]
  3. Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
    [Crossref] [PubMed]
  4. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt 10,1636–1641 (1971)
    [Crossref] [PubMed]
  5. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt 41,1929–1939 (1994)
    [Crossref]
  6. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17,1108–1114 (2000)
    [Crossref]
  7. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt 41,845–852 (2002)
    [Crossref] [PubMed]
  8. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19,621–629 (2002)
    [Crossref]
  9. F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett 21,896–898 (1996)
    [Crossref] [PubMed]
  10. L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
    [Crossref]
  11. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10
  12. S.-D. Wu and E. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B 20,1177–1188 (2003)
    [Crossref]
  13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization driven diffusion model,” Opt. Express 13,6990–7004 (2005)
    [Crossref] [PubMed]
  14. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II -Photopolymer systems

2007 (1)

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

2005 (1)

2003 (1)

2002 (2)

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt 41,845–852 (2002)
[Crossref] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19,621–629 (2002)
[Crossref]

2001 (1)

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3,72–81 (2001)
[Crossref]

2000 (3)

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17,1108–1114 (2000)
[Crossref]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II -Photopolymer systems

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10

1999 (1)

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

1998 (1)

H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
[Crossref]

1996 (1)

F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett 21,896–898 (1996)
[Crossref] [PubMed]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt 41,1929–1939 (1994)
[Crossref]

1971 (1)

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt 10,1636–1641 (1971)
[Crossref] [PubMed]

Burr, G.W.

F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett 21,896–898 (1996)
[Crossref] [PubMed]

Close, C. E.

Colburn, W. S.

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt 10,1636–1641 (1971)
[Crossref] [PubMed]

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II -Photopolymer systems

Dhar, L.

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Dietz, E.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

Eichler, H. J.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3,72–81 (2001)
[Crossref]

Eichler, H.J.

H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
[Crossref]

Frohmann, S.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

Gallego, S.

Gleeson, M. R.

Glytsis, E.

Haines, K. A.

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt 10,1636–1641 (1971)
[Crossref] [PubMed]

Hale, A.

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Katz, H.E.

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Kelly, J. V.

Koppa, P.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

Korn, G. A.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10

Korn, T. M.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10

Kümmel, P.

H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
[Crossref]

Lawrence, J. R.

Lörincz, E.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

Mok, F.

F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett 21,896–898 (1996)
[Crossref] [PubMed]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt 41,1929–1939 (1994)
[Crossref]

Nagy, Zs.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

Neipp, C.

O’Neill, F. T.

Orlic, S.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3,72–81 (2001)
[Crossref]

H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
[Crossref]

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II -Photopolymer systems

F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett 21,896–898 (1996)
[Crossref] [PubMed]

Schilling, F.G.

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Schilling, M.L.

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Schnoes, M.G.

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Sheridan, J. T.

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II -Photopolymer systems

Ulm, S.

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3,72–81 (2001)
[Crossref]

Wappelt, A.

H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
[Crossref]

Wu, S.-D.

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt 41,1929–1939 (1994)
[Crossref]

Appl. Opt (3)

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007)
[Crossref] [PubMed]

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt 10,1636–1641 (1971)
[Crossref] [PubMed]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt 41,845–852 (2002)
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron (1)

H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron 4,840–848 (1998)
[Crossref]

J. Mod. Opt (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt 41,1929–1939 (1994)
[Crossref]

J. Opt. A (1)

S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3,72–81 (2001)
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett (2)

F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett 21,896–898 (1996)
[Crossref] [PubMed]

L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett 24,487–489 (1999)
[Crossref]

Other (2)

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II -Photopolymer systems

Supplementary Material (2)

» Media 1: AVI (2274 KB)     
» Media 2: AVI (1059 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Geometry of microholographic recording, and (b) calculated refractive index modulation of a microhologram. Grayscale shows the increasing of the refractive index due to exposure.

Fig. 2.
Fig. 2.

2.2 Mbyte animation of plane wave hologram recording in photopolymer material [Media 1]

Fig. 3.
Fig. 3.

1.1 Mbyte animation of microholographic recording and readout. [Media 2]

Fig. 4.
Fig. 4.

Measured (a) and calculated (b) diffraction efficiency from a 3x3 bit pattern. Holograms are written in order from left to right and lines are written from bottom to top. Holograms are equally exposed. See cross sectional view on Fig. 5.

Fig. 5.
Fig. 5.

Cross sectional view of Fig. 4 at the right three holograms. Continuous black line is the calculated and dashed red line is the measured diffraction efficiency of the microholograms. The scale is normalized to the strongest (bottom left) holograms.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u x t t = x [ D x t u x t x ] 0 t R ( x , x ; t , t ) F x t u x t dt dx ,
u x t t = D ( t ) 2 u x t x 2 R x x F x t u x t dx
u x t + Δ t u x t = Δ u x t = Δ t R x x F x t u x t dx
R x x = exp [ ( x x ) 2 2 σ ] 2 πσ ,
F x t = κ I x t ,
Δ u x t = Δ t exp [ ( x x ) 2 2 σ ] 2 πσ κ I x t u x t dx
u x t + τ = u x t 1 4 πDτ exp ( x 2 4 ) .
Δε x t = Δ ε max p x t p max

Metrics