Abstract

Microholographic data storage system model is presented that includes non-linear and non-local behavior of the storage material for accurate simulation of the system and optimization of the writing process. For the description of the photopolymer material a diffusion based nonlocal material model is used. The diffusion equation is solved numerically and the modulation of the dielectric constant is calculated. Diffraction efficiency of simulated microholograms and measurements were compared, and they show good agreement.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
    [CrossRef]
  2. S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001).
    [CrossRef]
  3. Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
    [CrossRef] [PubMed]
  4. W. S. Colburn and K. A. Haines, "Volume hologram formation in photopolymer materials," Appl. Opt. 10, 1636-1641 (1971).
    [CrossRef] [PubMed]
  5. G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
    [CrossRef]
  6. J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  7. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models," Appl. Opt. 41, 845-852 (2002).
    [CrossRef] [PubMed]
  8. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. B 19, 621-629 (2002).
    [CrossRef]
  9. F. Mok, G.W. Burr, and D. Psaltis, "A system metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996).
    [CrossRef] [PubMed]
  10. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. G. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage," Opt. Lett. 24, 487-489 (1999).
    [CrossRef]
  11. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10.
  12. S.-D. Wu and E. Glytsis, "Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis," J. Opt. Soc. Am. B 20, 1177-1188 (2003).
    [CrossRef]
  13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymerization driven diffusion model," Opt. Express 13, 6990-7004 (2005).
    [CrossRef] [PubMed]
  14. H. J. Coufal, D. Psaltis and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II - Photopolymer systems

2007

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

2005

2003

2002

2001

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

2000

1999

1998

H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
[CrossRef]

1996

1994

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

1971

Burr, G.W.

Close, C. E.

Colburn, W. S.

Dhar, L.

Dietz, E.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

Eichler, H. J.

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
[CrossRef]

Frohmann, S.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

Gallego, S.

Gleeson, M. R.

Glytsis, E.

Haines, K. A.

Hale, A.

Katz, H. E.

Kelly, J. V.

Koppa, P.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

Kümmel, P.

H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
[CrossRef]

Lawrence, J. R.

Lorincz, E.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

Mok, F.

Mouroulis, P.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Nagy, Zs.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

Neipp, C.

O'Neill, F. T.

Orlic, S.

Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007).
[CrossRef] [PubMed]

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
[CrossRef]

Psaltis, D.

Schilling, F. G.

Schilling, M. L.

Schnoes, M. G.

Sheridan, J. T.

Ulm, S.

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

Wappelt, A.

H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
[CrossRef]

Wu, S.-D.

Zhao, G.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Tops. Quantum Electron.

H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998).
[CrossRef]

J. Mod. Opt.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10.

H. J. Coufal, D. Psaltis and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II - Photopolymer systems

Supplementary Material (2)

» Media 1: AVI (2274 KB)     
» Media 2: AVI (1059 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Geometry of microholographic recording, and (b) calculated refractive index modulation of a microhologram. Grayscale shows the increasing of the refractive index due to exposure.

Fig. 2.
Fig. 2.

2.2 Mbyte animation of plane wave hologram recording in photopolymer material [Media 1]

Fig. 3.
Fig. 3.

1.1 Mbyte animation of microholographic recording and readout. [Media 2]

Fig. 4.
Fig. 4.

Measured (a) and calculated (b) diffraction efficiency from a 3x3 bit pattern. Holograms are written in order from left to right and lines are written from bottom to top. Holograms are equally exposed. See cross sectional view on Fig. 5.

Fig. 5.
Fig. 5.

Cross sectional view of Fig. 4 at the right three holograms. Continuous black line is the calculated and dashed red line is the measured diffraction efficiency of the microholograms. The scale is normalized to the strongest (bottom left) holograms.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u x t t = x [ D x t u x t x ] 0 t R ( x , x ; t , t ) F x t u x t dt dx ,
u x t t = D ( t ) 2 u x t x 2 R x x F x t u x t dx
u x t + Δ t u x t = Δ u x t = Δ t R x x F x t u x t dx
R x x = exp [ ( x x ) 2 2 σ ] 2 πσ ,
F x t = κ I x t ,
Δ u x t = Δ t exp [ ( x x ) 2 2 σ ] 2 πσ κ I x t u x t dx
u x t + τ = u x t 1 4 πDτ exp ( x 2 4 ) .
Δε x t = Δ ε max p x t p max

Metrics