Abstract

Single-shot time resolved Coherent Anti-Stokes Raman Scattering (CARS) is presented as a viable method for fast measurements of molecular spectra. The method is based on the short spatial extension of femtosecond pulses and maps time delays between pulses onto the region of intersection between broad beams. The image of the emitted CARS signal contains full temporal information on the field-free molecular dynamics, from which spectral information is extracted. The method is demonstrated on liquid samples of CHBr3 and CHCl3 and the Raman spectrum of the low-lying vibrational states of these molecules is measured.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, "Two-dimensional Femtosecond Spectroscopy," Ann. Rev. Phys. Chem. 54, 425-463 (2003).
    [CrossRef]
  2. T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
    [CrossRef] [PubMed]
  3. T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
    [CrossRef] [PubMed]
  4. M. T. Zanni and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures," Curr. Opin. Struct. Biol. 11, 516-522 (2001).
    [CrossRef]
  5. W. Zhao and J. C. Wright, "Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR," Phys. Rev. Lett. 84, 1411-1414 (2000).
    [CrossRef] [PubMed]
  6. V. Chernyak, W. M. Zhang and S. Mukamel, "Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations," J. Chem. Phys. 109, 9587-9601 (1998).
    [CrossRef]
  7. C. Scheurer and S. Mukamel, "Design strategies for pulse sequences in multidimensional optical spectroscopies," J. Chem. Phys. 115, 4989-5004 (2001).
    [CrossRef]
  8. S. Woutersen and P. Hamm, "Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy," J. Phys. Chem. B 104, 11316-11320 (2000).
    [CrossRef]
  9. S. Woutersen and P. Hamm, "Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water," J. Chem. Phys. 115, 7737-7743 (2001).
    [CrossRef]
  10. J. Park and R. M. Hochstrasser, "Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond," Chem. Phys. 323, 78-86 (2006).
    [CrossRef]
  11. D. J. Tannor, R. Kosloff and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations," J. Chem. Phys. 85, 5805-5820 (1986).
    [CrossRef]
  12. I. Pinkas, G. Knopp and Y. Prior, "Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering," J. Chem. Phys. 115, 236-244 (2001).
    [CrossRef]
  13. D. V. Murphy, M. B. Long, R. K. Chang and A. C. Eckbreth, "Spatially resolved coherent anti-Stokes Raman-Spectroscopy from a line across a CH4 Jet," Opt. Lett. 4, 167-169 (1979).
    [CrossRef] [PubMed]
  14. D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
    [CrossRef]
  15. D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
    [CrossRef]
  16. M. M. Malley and P. M. Rentzepis, "Picosecond molecular relaxation displayed with crossed laser beams," Chem. Phys. Lett. 3, 534-536 (1969).
    [CrossRef]
  17. K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
    [CrossRef]
  18. J. T. Fourkas, L. Dhar, K. A. Nelson and R. Trebino, "Spatially encoded, single-shot ultrafast spectroscopies," J. Opt. Soc. Am. B 12, 155-165 (1995).
    [CrossRef]
  19. Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
    [CrossRef]
  20. S. Zamith, Z. Ansari, F. Lepine and M. J. J. Vrakking, "Single-shot measurement of revival structures in femtosecond laser-induced alignment of molecules," Opt. Lett. 30, 2326-2328 (2005).
    [CrossRef] [PubMed]
  21. P. R. Poulin. and K. A. Nelson, "Irreversible organic crystalline chemistry monitored in real time," Science 313, 1756-1760 (2006).
    [CrossRef] [PubMed]
  22. M. F. DeCamp and A. Tokmakoff, "Single-shot two-dimensional spectrometer," Opt. Lett. 31, 113-115 (2006).
    [CrossRef] [PubMed]
  23. Y. Prior, "3-dimensional phase matching in 4-wave mixing," Appl. Opt. 19, 1741-1743 (1980).
    [CrossRef]
  24. A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams," J. Raman Spectrosc. 32, 960-970 (2001).
    [CrossRef]
  25. A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques," Appl. Phys. B 77, 369-376 (2003).
    [CrossRef]
  26. G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
    [CrossRef]

2006 (4)

J. Park and R. M. Hochstrasser, "Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond," Chem. Phys. 323, 78-86 (2006).
[CrossRef]

Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
[CrossRef]

P. R. Poulin. and K. A. Nelson, "Irreversible organic crystalline chemistry monitored in real time," Science 313, 1756-1760 (2006).
[CrossRef] [PubMed]

M. F. DeCamp and A. Tokmakoff, "Single-shot two-dimensional spectrometer," Opt. Lett. 31, 113-115 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Zamith, Z. Ansari, F. Lepine and M. J. J. Vrakking, "Single-shot measurement of revival structures in femtosecond laser-induced alignment of molecules," Opt. Lett. 30, 2326-2328 (2005).
[CrossRef] [PubMed]

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
[CrossRef] [PubMed]

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

2003 (2)

D. M. Jonas, "Two-dimensional Femtosecond Spectroscopy," Ann. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef]

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques," Appl. Phys. B 77, 369-376 (2003).
[CrossRef]

2001 (5)

C. Scheurer and S. Mukamel, "Design strategies for pulse sequences in multidimensional optical spectroscopies," J. Chem. Phys. 115, 4989-5004 (2001).
[CrossRef]

M. T. Zanni and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures," Curr. Opin. Struct. Biol. 11, 516-522 (2001).
[CrossRef]

S. Woutersen and P. Hamm, "Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water," J. Chem. Phys. 115, 7737-7743 (2001).
[CrossRef]

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams," J. Raman Spectrosc. 32, 960-970 (2001).
[CrossRef]

I. Pinkas, G. Knopp and Y. Prior, "Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering," J. Chem. Phys. 115, 236-244 (2001).
[CrossRef]

2000 (4)

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

W. Zhao and J. C. Wright, "Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR," Phys. Rev. Lett. 84, 1411-1414 (2000).
[CrossRef] [PubMed]

S. Woutersen and P. Hamm, "Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy," J. Phys. Chem. B 104, 11316-11320 (2000).
[CrossRef]

G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
[CrossRef]

1999 (1)

1998 (1)

V. Chernyak, W. M. Zhang and S. Mukamel, "Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations," J. Chem. Phys. 109, 9587-9601 (1998).
[CrossRef]

1995 (1)

1986 (1)

D. J. Tannor, R. Kosloff and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations," J. Chem. Phys. 85, 5805-5820 (1986).
[CrossRef]

1980 (1)

1979 (1)

1969 (1)

M. M. Malley and P. M. Rentzepis, "Picosecond molecular relaxation displayed with crossed laser beams," Chem. Phys. Lett. 3, 534-536 (1969).
[CrossRef]

Akimov, D. A.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Ansari, Z.

Blankenship, R. E.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

Brixner, T.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
[CrossRef] [PubMed]

Chang, R. K.

Chernyak, V.

V. Chernyak, W. M. Zhang and S. Mukamel, "Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations," J. Chem. Phys. 109, 9587-9601 (1998).
[CrossRef]

Cho, M.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

Cunyuan, Z.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

David Lee, P.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

DeCamp, M. F.

Dhar, L.

Eckbreth, A. C.

Fedotov, A. B.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Fleming, G. R.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
[CrossRef] [PubMed]

Fourkas, J. T.

Furukawa, N.

Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
[CrossRef]

Graener, H.

G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
[CrossRef]

Hamm, P.

S. Woutersen and P. Hamm, "Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water," J. Chem. Phys. 115, 7737-7743 (2001).
[CrossRef]

S. Woutersen and P. Hamm, "Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy," J. Phys. Chem. B 104, 11316-11320 (2000).
[CrossRef]

Hochstrasser, R. M.

J. Park and R. M. Hochstrasser, "Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond," Chem. Phys. 323, 78-86 (2006).
[CrossRef]

M. T. Zanni and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures," Curr. Opin. Struct. Biol. 11, 516-522 (2001).
[CrossRef]

Ishida, A.

Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
[CrossRef]

Jens, S.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

Jonas, D. M.

D. M. Jonas, "Two-dimensional Femtosecond Spectroscopy," Ann. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef]

Knopp, G.

I. Pinkas, G. Knopp and Y. Prior, "Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering," J. Chem. Phys. 115, 236-244 (2001).
[CrossRef]

Koroteev, N. I.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Kosloff, R.

D. J. Tannor, R. Kosloff and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations," J. Chem. Phys. 85, 5805-5820 (1986).
[CrossRef]

Lepine, F.

Long, M. B.

Makishima, Y.

Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
[CrossRef]

Malley, M. M.

M. M. Malley and P. M. Rentzepis, "Picosecond molecular relaxation displayed with crossed laser beams," Chem. Phys. Lett. 3, 534-536 (1969).
[CrossRef]

Mancal, T.

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
[CrossRef] [PubMed]

Miles, R. B.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Mukamel, S.

C. Scheurer and S. Mukamel, "Design strategies for pulse sequences in multidimensional optical spectroscopies," J. Chem. Phys. 115, 4989-5004 (2001).
[CrossRef]

V. Chernyak, W. M. Zhang and S. Mukamel, "Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations," J. Chem. Phys. 109, 9587-9601 (1998).
[CrossRef]

Murphy, D. V.

Naumov, A. N.

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques," Appl. Phys. B 77, 369-376 (2003).
[CrossRef]

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams," J. Raman Spectrosc. 32, 960-970 (2001).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Nelson, K. A.

P. R. Poulin. and K. A. Nelson, "Irreversible organic crystalline chemistry monitored in real time," Science 313, 1756-1760 (2006).
[CrossRef] [PubMed]

J. T. Fourkas, L. Dhar, K. A. Nelson and R. Trebino, "Spatially encoded, single-shot ultrafast spectroscopies," J. Opt. Soc. Am. B 12, 155-165 (1995).
[CrossRef]

Park, J.

J. Park and R. M. Hochstrasser, "Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond," Chem. Phys. 323, 78-86 (2006).
[CrossRef]

Patzlaff, T.

G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
[CrossRef]

Pinkas, I.

I. Pinkas, G. Knopp and Y. Prior, "Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering," J. Chem. Phys. 115, 236-244 (2001).
[CrossRef]

Poulin, P. R.

P. R. Poulin. and K. A. Nelson, "Irreversible organic crystalline chemistry monitored in real time," Science 313, 1756-1760 (2006).
[CrossRef] [PubMed]

Prior, Y.

I. Pinkas, G. Knopp and Y. Prior, "Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering," J. Chem. Phys. 115, 236-244 (2001).
[CrossRef]

Y. Prior, "3-dimensional phase matching in 4-wave mixing," Appl. Opt. 19, 1741-1743 (1980).
[CrossRef]

Rentzepis, P. M.

M. M. Malley and P. M. Rentzepis, "Picosecond molecular relaxation displayed with crossed laser beams," Chem. Phys. Lett. 3, 534-536 (1969).
[CrossRef]

Rice, S. A.

D. J. Tannor, R. Kosloff and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations," J. Chem. Phys. 85, 5805-5820 (1986).
[CrossRef]

Scheurer, C.

C. Scheurer and S. Mukamel, "Design strategies for pulse sequences in multidimensional optical spectroscopies," J. Chem. Phys. 115, 4989-5004 (2001).
[CrossRef]

Seifert, G.

G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
[CrossRef]

Sidorov-Biryukov, D. A.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
[CrossRef] [PubMed]

Takeda, J.

Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
[CrossRef]

Tannor, D. J.

D. J. Tannor, R. Kosloff and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations," J. Chem. Phys. 85, 5805-5820 (1986).
[CrossRef]

Tokmakoff, A.

Trebino, R.

Vaswani, H. M.

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

Vrakking, M. J. J.

Wai Ming, K.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

Woutersen, S.

S. Woutersen and P. Hamm, "Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water," J. Chem. Phys. 115, 7737-7743 (2001).
[CrossRef]

S. Woutersen and P. Hamm, "Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy," J. Phys. Chem. B 104, 11316-11320 (2000).
[CrossRef]

Wright, J. C.

W. Zhao and J. C. Wright, "Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR," Phys. Rev. Lett. 84, 1411-1414 (2000).
[CrossRef] [PubMed]

Xiangguo, G.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

Yun-Liang, L.

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

Zamith, S.

Zanni, M. T.

M. T. Zanni and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures," Curr. Opin. Struct. Biol. 11, 516-522 (2001).
[CrossRef]

Zhang, W. M.

V. Chernyak, W. M. Zhang and S. Mukamel, "Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations," J. Chem. Phys. 109, 9587-9601 (1998).
[CrossRef]

Zhao, W.

W. Zhao and J. C. Wright, "Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR," Phys. Rev. Lett. 84, 1411-1414 (2000).
[CrossRef] [PubMed]

Zheltikov, A. M.

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques," Appl. Phys. B 77, 369-376 (2003).
[CrossRef]

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams," J. Raman Spectrosc. 32, 960-970 (2001).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov and R. B. Miles, "One-dimensional coherent four-wave mixing as a way to image the spatial distribution of atoms in a laser-produced plasma," Opt. Lett. 24, 478-480 (1999).
[CrossRef]

Zurl, R.

G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

D. M. Jonas, "Two-dimensional Femtosecond Spectroscopy," Ann. Rev. Phys. Chem. 54, 425-463 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques," Appl. Phys. B 77, 369-376 (2003).
[CrossRef]

Chem. Phys. (1)

J. Park and R. M. Hochstrasser, "Multidimensional infrared spectroscopy of a peptide intramolecular hydrogen bond," Chem. Phys. 323, 78-86 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

M. M. Malley and P. M. Rentzepis, "Picosecond molecular relaxation displayed with crossed laser beams," Chem. Phys. Lett. 3, 534-536 (1969).
[CrossRef]

Curr. Opin. Struct. Biol. (1)

M. T. Zanni and R. M. Hochstrasser, "Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures," Curr. Opin. Struct. Biol. 11, 516-522 (2001).
[CrossRef]

J. Chem. Phys. (8)

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121, 4221-4236 (2004).
[CrossRef] [PubMed]

D. J. Tannor, R. Kosloff and S. A. Rice, "Coherent pulse sequence induced control of selectivity of reactions - exact Quantum-Mechanical Calculations," J. Chem. Phys. 85, 5805-5820 (1986).
[CrossRef]

I. Pinkas, G. Knopp and Y. Prior, "Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering," J. Chem. Phys. 115, 236-244 (2001).
[CrossRef]

K. Wai Ming, Z. Cunyuan, L. Yun-Liang, G. Xiangguo and P. David Lee, "Direct observation of an isopolyhalomethane O--H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product," J. Chem. Phys. 120, 3323-3332 (2004).
[CrossRef]

V. Chernyak, W. M. Zhang and S. Mukamel, "Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations," J. Chem. Phys. 109, 9587-9601 (1998).
[CrossRef]

C. Scheurer and S. Mukamel, "Design strategies for pulse sequences in multidimensional optical spectroscopies," J. Chem. Phys. 115, 4989-5004 (2001).
[CrossRef]

S. Woutersen and P. Hamm, "Time-resolved two-dimensional vibrational spectroscopy of a short alpha-helix in water," J. Chem. Phys. 115, 7737-7743 (2001).
[CrossRef]

G. Seifert, R. Zurl, T. Patzlaff and H. Graener, "Time-resolved observation of intermolecular vibrational energy transfer in liquid bromoform," J. Chem. Phys. 112, 6349-6354 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

S. Woutersen and P. Hamm, "Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy," J. Phys. Chem. B 104, 11316-11320 (2000).
[CrossRef]

J. Raman Spectrosc. (2)

A. N. Naumov and A. M. Zheltikov, "Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams," J. Raman Spectrosc. 32, 960-970 (2001).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, R. B. Miles, A. N. Naumov, D. A. Sidorov-Biryukov and A. M. Zheltikov, "Line-by-line imaging of laser-produced plasmas using one-dimensional coherent four-wave mixing," J. Raman Spectrosc. 31, 677-687 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Makishima, N. Furukawa, A. Ishida and J. Takeda, "Femtosecond real-time pump-probe imaging spectroscopy implemented on a single shot basis," Jpn. J. Appl. Phys. 45, 5986-5989 (2006).
[CrossRef]

Nature (1)

T. Brixner, S. Jens, H. M. Vaswani, M. Cho, R. E. Blankenship and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis " Nature 434, 625 (2005).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

W. Zhao and J. C. Wright, "Doubly Vibrationally enhanced four wave mixing: The Optical Analog to 2D NMR," Phys. Rev. Lett. 84, 1411-1414 (2000).
[CrossRef] [PubMed]

Science (1)

P. R. Poulin. and K. A. Nelson, "Irreversible organic crystalline chemistry monitored in real time," Science 313, 1756-1760 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the three incoming beams in single-shot CARS experiment. The signal beam is collected directly on a camera.

Fig. 2.
Fig. 2.

schematic y-z slice of the interaction region. The outer rectangle represents the intersection between the k1 and k3 beams. The large gray circle represents beam k2 . The inner black circle depicts region where all three pulses coincide and DFWM signal is produced. Dashed and dotted lines represent coincidence between pulses 2 and 3 and pulses 2 and 1 respectively. Gray ellipses represent time delayed vibrational signal. The four pulse sequence schemes depict order of arrival of the pulses in each quadrant of the interaction volume.

Fig. 3.
Fig. 3.

Single-Pulse CARS image of bromoform “as captured”. The line represents the calibrated τ2,3=0 line. The upper axis depicts the τ3,1 delay (pump-probe delay) (a). Power spectrum of the averaged time-domain signal. The time-domain signal is depicted in the inset (b).

Fig. 4.
Fig. 4.

Single-Shot CARS image of chloroform “as captured”. The line represents calibrated τ2,3=0 line. The upper axis depicts the τ3,1 delay (pump-probe delay) (a). Power spectrum of the averaged temporal signal of single-shot CARS image of chloroform molecules. Averaged temporal signal is provided in insertion (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 1 = cos θ sin θ 0 ; k 2 = cos θ 0 sin θ ; k 3 = cos θ sin θ 0 ; k s = k 1 k 2 + k 3 = cos θ 0 sin θ .
τ 3,1 ( r ) = 2 yc 1 sin θ + T 3 T 1 ,
τ 2,1 ( r ) = ( z y ) c 1 sin θ + T 2 T 1 ,
τ 2,3 ( r ) = ( z + y ) c 1 sin θ + T 2 T 3 .

Metrics