Abstract

We propose and simulate all-optical simultaneous half-adder, half-subtracter, and OR logic gate at 40 Gbit/s based on the cascaded sum-and difference-frequency generation (SFG+DFG) using only one periodically poled lithium niobate (PPLN) waveguide. The SFG and DFG processes generate the Borrow and Carry outputs, respectively. The Sum/Difference and OR are obtained by properly combining the outputs from PPLN after SFG+DFG. The eye diagrams, pulse width, quality-factor (Q-factor), extinction ratio (ER), and tunability are calculated and discussed,showing impressive operation performance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Stubkjaer, ‘Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,’ IEEE J. Sel. Top. Quantum Electron. 6,1428–1435 (2000).
    [CrossRef]
  2. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, ‘All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,’ J. Lightwave Technol. 24,3392–3399 (2006).
    [CrossRef]
  3. S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).
  4. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
    [CrossRef]
  5. J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
    [CrossRef]
  6. S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).
  7. J. E. McGeehan, S. Kumar, and A. E. Willner, ‘All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,’ CLEO 2005, May, 2,1061–1063 (2005).
  8. J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
    [CrossRef]
  9. J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
    [CrossRef]
  10. J. Sun, D. Huang, and D. Liu, ‘Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides,’ Opt. Commun. 259,321–327 (2006).
    [CrossRef]
  11. J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum-and difference frequency generation (cSFG/DFG) in a PPLN waveguide,’ Appl. Phys. B 83,543–548 (2006).
    [CrossRef]
  12. J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Experimental demonstration of wavelength conversion between pspulses based on cascaded sum-and difference frequency generation (SFG+DFG) in LiNbO31 waveguides,’ Opt. Express 13,7405–7414 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
    [CrossRef] [PubMed]
  13. J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
    [CrossRef]
  14. J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
    [CrossRef]
  15. J. E. McGeehan, M. Giltrelli, and A. E. Willner, ‘All-optical digital 3-input AND gate using sum-and difference-frequency generation in a PPLN waveguide,’ LEOS 2005, July,179–180 (2005).
  16. J. Wang, J. Sun, and Q. Sun, ‘Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,’ Opt. Lett. 31,1711–1713 (2006).
    [CrossRef] [PubMed]
  17. J. Sun and J. Wang, ‘Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides,’ Opt. Commun. 267,187–192 (2006).
    [CrossRef]

2006 (7)

J. Sun, D. Huang, and D. Liu, ‘Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides,’ Opt. Commun. 259,321–327 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum-and difference frequency generation (cSFG/DFG) in a PPLN waveguide,’ Appl. Phys. B 83,543–548 (2006).
[CrossRef]

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[CrossRef]

J. Sun and J. Wang, ‘Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides,’ Opt. Commun. 267,187–192 (2006).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, ‘Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,’ Opt. Lett. 31,1711–1713 (2006).
[CrossRef] [PubMed]

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, ‘All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,’ J. Lightwave Technol. 24,3392–3399 (2006).
[CrossRef]

2005 (4)

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Experimental demonstration of wavelength conversion between pspulses based on cascaded sum-and difference frequency generation (SFG+DFG) in LiNbO31 waveguides,’ Opt. Express 13,7405–7414 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
[CrossRef] [PubMed]

J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, ‘All-optical digital 3-input AND gate using sum-and difference-frequency generation in a PPLN waveguide,’ LEOS 2005, July,179–180 (2005).

J. E. McGeehan, S. Kumar, and A. E. Willner, ‘All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,’ CLEO 2005, May, 2,1061–1063 (2005).

2004 (1)

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

2003 (2)

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

2000 (1)

K. E. Stubkjaer, ‘Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,’ IEEE J. Sel. Top. Quantum Electron. 6,1428–1435 (2000).
[CrossRef]

1998 (1)

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
[CrossRef]

Blow, K. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
[CrossRef]

Byun, Y. T.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

Fejer, M.

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

Fejer, M. M.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[CrossRef]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, ‘All-optical digital 3-input AND gate using sum-and difference-frequency generation in a PPLN waveguide,’ LEOS 2005, July,179–180 (2005).

Gurkan, D.

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

Han, S. K.

Huang, D.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

J. Sun, D. Huang, and D. Liu, ‘Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides,’ Opt. Commun. 259,321–327 (2006).
[CrossRef]

J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
[CrossRef]

Jhon, Y. M.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

Kang, B.

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).

Kang, J. M.

Kelly, A. E.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
[CrossRef]

Kim, J. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

Kim, J. Y.

Kim, S.

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).

Kim, S. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

Kim, T. Y.

Kumar, S.

J. E. McGeehan, S. Kumar, and A. E. Willner, ‘All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,’ CLEO 2005, May, 2,1061–1063 (2005).

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

Kurz, J. R.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[CrossRef]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

Lee, S.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).

Liu, D.

J. Sun, D. Huang, and D. Liu, ‘Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides,’ Opt. Commun. 259,321–327 (2006).
[CrossRef]

J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
[CrossRef]

Liu, W.

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

Luo, C.

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum-and difference frequency generation (cSFG/DFG) in a PPLN waveguide,’ Appl. Phys. B 83,543–548 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Experimental demonstration of wavelength conversion between pspulses based on cascaded sum-and difference frequency generation (SFG+DFG) in LiNbO31 waveguides,’ Opt. Express 13,7405–7414 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
[CrossRef] [PubMed]

Ma, Z.

J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
[CrossRef]

Manning, R. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
[CrossRef]

McGeehan, J. E.

J. E. McGeehan, S. Kumar, and A. E. Willner, ‘All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,’ CLEO 2005, May, 2,1061–1063 (2005).

J. E. McGeehan, M. Giltrelli, and A. E. Willner, ‘All-optical digital 3-input AND gate using sum-and difference-frequency generation in a PPLN waveguide,’ LEOS 2005, July,179–180 (2005).

Parameswaran, K.

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

Park, J.

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).

Poustie, A. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, ‘Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,’ IEEE J. Sel. Top. Quantum Electron. 6,1428–1435 (2000).
[CrossRef]

Sun, J.

J. Sun and J. Wang, ‘Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides,’ Opt. Commun. 267,187–192 (2006).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, ‘Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,’ Opt. Lett. 31,1711–1713 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[CrossRef]

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum-and difference frequency generation (cSFG/DFG) in a PPLN waveguide,’ Appl. Phys. B 83,543–548 (2006).
[CrossRef]

J. Sun, D. Huang, and D. Liu, ‘Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides,’ Opt. Commun. 259,321–327 (2006).
[CrossRef]

J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Experimental demonstration of wavelength conversion between pspulses based on cascaded sum-and difference frequency generation (SFG+DFG) in LiNbO31 waveguides,’ Opt. Express 13,7405–7414 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
[CrossRef] [PubMed]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

Sun, Q.

Tian, J.

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

Wang, J.

J. Wang, J. Sun, and Q. Sun, ‘Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,’ Opt. Lett. 31,1711–1713 (2006).
[CrossRef] [PubMed]

J. Sun and J. Wang, ‘Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides,’ Opt. Commun. 267,187–192 (2006).
[CrossRef]

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum-and difference frequency generation (cSFG/DFG) in a PPLN waveguide,’ Appl. Phys. B 83,543–548 (2006).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Experimental demonstration of wavelength conversion between pspulses based on cascaded sum-and difference frequency generation (SFG+DFG) in LiNbO31 waveguides,’ Opt. Express 13,7405–7414 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
[CrossRef] [PubMed]

Willner, A. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, ‘All-optical digital 3-input AND gate using sum-and difference-frequency generation in a PPLN waveguide,’ LEOS 2005, July,179–180 (2005).

J. E. McGeehan, S. Kumar, and A. E. Willner, ‘All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,’ CLEO 2005, May, 2,1061–1063 (2005).

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

Woo, D. H.

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

Yuan, X.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

Appl. Phys. B (1)

J. Wang, J. Sun, C. Luo, and Q. Sun, ‘Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum-and difference frequency generation (cSFG/DFG) in a PPLN waveguide,’ Appl. Phys. B 83,543–548 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. E. Stubkjaer, ‘Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,’ IEEE J. Sel. Top. Quantum Electron. 6,1428–1435 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, ‘Tunable wavelength conversion of ps-pulses exploiting cascaded sum-and difference frequency generation in a PPLN-fiber ring laser,’ IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[CrossRef]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, ‘Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,’ IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (5)

J. Sun, D. Huang, and D. Liu, ‘Simultaneous wavelength conversion and pulse compression exploiting cascaded second-order nonlinear processes in LiNbO3 waveguides,’ Opt. Commun. 259,321–327 (2006).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, ‘All-optical binary half-adder,’ Opt. Commun. 156,22–26 (1998).
[CrossRef]

J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, ‘All-optical half adder using semiconductor optical amplifier based devices,’ Opt. Commun. 218,345–349 (2003).
[CrossRef]

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, ‘Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,’ Opt. Commun. 269,179–187 (2006).
[CrossRef]

J. Sun and J. Wang, ‘Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides,’ Opt. Commun. 267,187–192 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. Sun, Z. Ma, D. Liu, and D. Huang, ‘Wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides,’ Opt. Quantum Electron. 37443–456 (2005).
[CrossRef]

Other (4)

S. Kim, S. Lee, B. Kang, S. Lee, and J. Park, ‘All-optical binary half adder using SLALOMs,’ CLEO/Pacific Rim 2001,2, II-254-II-255 (2001).

S. Kumar, D. Gurkan, A. E. Willner, K. Parameswaran, and M. Fejer, ‘All-optical half adder using a PPLN waveguide and an SOA,’ OFC 2004, February, 1,23–27 (2004).

J. E. McGeehan, S. Kumar, and A. E. Willner, ‘All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,’ CLEO 2005, May, 2,1061–1063 (2005).

J. E. McGeehan, M. Giltrelli, and A. E. Willner, ‘All-optical digital 3-input AND gate using sum-and difference-frequency generation in a PPLN waveguide,’ LEOS 2005, July,179–180 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Digital gate-level diagram and logical truth table for the half-adder, half-subtracter, and OR logic gate. The Sum and Difference outputs are identical.

Fig. 2.
Fig. 2.

Schematic diagram of single-PPLN-based all-optical half-adder, half-subtracter, and OR logic gate. TF: tunable filter, VOA: variable optical attenuator, TDL: tunable delay line.

Fig. 3.
Fig. 3.

Input and output waveforms for the half-adder, half-subtracter, and OR logic gate: (a) input signal A, (b) input signal B, (c) Sum/Difference output (XOR), (d) Carry output (AND) of sum-frequency wave, (e) Carry output (AND) of idler wave, (f) Borrow output of A-B, (g) Borrow output of B-A, (h) OR output (A+Ā∙B), (i) OR output (B+AB̄).

Fig. 4.
Fig. 4.

Eye diagrams for the half-adder, half-subtracter, and OR logic gate: (a) input signal A,(b) input signal B, (c) Sum/Difference output (XOR), (d) Carry output (AND) of sum-frequency wave, (e) Carry output (AND) of idler wave, (f) Borrow output of A-B, (g) Borrow output of B-A, (h) OR output (A + Ā∙B), (i) OR output (B+AB̄).

Fig. 5.
Fig. 5.

Dependence of (a) idler pulse width, (b) Q-factor, (c) extinction ratio on the length of the PPLN waveguide.

Fig. 6.
Fig. 6.

Dependence of Q-factor (Sum/Difference, Borrows, OR) and extinction ratio (Sum/Difference, Borrows) on (a)(b) pump wavelength, idler wavelength and (c)(d) wavelengths of signals A, B.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A SA z + β 1 SA A SA t + i 2 β 2 SA 2 A SA t 2 = SA κ SFG A SB * A SF exp ( k SFG z )
A SB z + β 1 SB A SB t + i 2 β 2 SB 2 A SB t 2 = SB κ SFG A SA * A SF exp ( k SFG z )
A SF z + β 1 SF A SF t + i 2 β 2 SF 2 A SF t 2 = SF κ SFG A SA A SB exp ( k SFG z ) + SF κ DFG A P A i exp ( i Δ k DFG z )
A P z + β 1 P A P t + i 2 β 2 P 2 A P t 2 = P κ DFG A i * A SF exp ( i Δ k DFG z )
A i z + β 1 i A i t + i 2 β 2 i 2 A i t 2 = i κ DFG A P * A SF exp ( i Δ k DFG z )
κ SFG = d eff 2 μ 0 cn SA n SB n SF A eff
κ DFG = d eff 2 μ 0 cn P n i n SF A eff
Δ k SFG = k SF k SA k SB 2 π Λ
Δ k DFG = k SF k P k i 2 π Λ

Metrics