Abstract

Diode lasers enable one to continuously cover the 730 to 1100 nm range as well as the 370 to 550 nm range by frequency doubling, but a large part of the electro-magnetic spectrum spanning from green to red remains accessible only through expensive and unpractical optically pumped dye lasers. Here we devise a method to multiply the frequency of optical waves by a factor 3/2 with a conversion that is phase-coherent and highly efficient. Together with harmonic generation, it will enable one to cover the visible spectrum with semiconductor lasers, opening new avenues in important fields such as laser spectroscopy and optical metrology.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513 (1999).
    [CrossRef] [PubMed]
  2. C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
    [CrossRef]
  3. O. Pfister, M. Muertz, J. S. Wells, L. Hollberg, and J. T. Murray, "Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4," Opt. Lett. 21, 1387 (1996).
    [CrossRef] [PubMed]
  4. J.-J. Zondy, D. Kolker, and N. C. Wong, "Dynamical signatures of self-phase-locking in a triply resonant optical parametric oscillator," Phys. Rev. Lett. 93, 43902 (2004).
    [CrossRef]
  5. C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, "Coherence properties of a doubly resonant monolithic optical parametric oscillator," J. Opt. Soc. Am B 7, 815 (1990).
    [CrossRef]
  6. E. J. Mason and N. C. Wong, "Observation of two distinct phase states in a self-phase-locked type ii phase-matched optical parametric oscillator," Opt. Lett. 23, 1733 (1998).
    [CrossRef]
  7. S. Feng and O. Pfister, "Quantum interference of ultrastable twin optical beams," Phys. Rev. Lett. 92, 203601 (2004).
    [CrossRef] [PubMed]
  8. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3," Opt. Lett. 21, 713 (1996).
    [CrossRef] [PubMed]
  9. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, "Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy," Opt. Lett. 24, 397 (1999).
    [CrossRef]
  10. M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
    [CrossRef]
  11. C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  12. L. Ricci et al. "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541 (1995).
    [CrossRef]
  13. R. A. Nyman et al. "Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomicphysics experiments," Rev. Sci. Instrum. 77, 033105 (2006).
    [CrossRef]
  14. The reflectivity at 1006.5 nm and 2013 nm is higher than 99.98%, while the transmission at 671 nm is 90%. The concave mirrors have a 100 mm radius of curvature, their distance is 130 mm, and the two nonlinear crystal are aligned along this arm close to the smaller waist of the cavity. The path between the two concave mirrors passing through the plane mirrors is 400 mm long.
  15. T. W. Haensch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy on a reflecting reference cavity," Opt. Commun. 35, 441 (1980).
    [CrossRef]
  16. G. Imeshev, M. Proctor, and M. M. Fejer, "Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal," Opt. Lett. 23, 165 (1998).
    [CrossRef]
  17. H. Karlsson and F. Laurell, "Electric field poling of flux grown KTiOPO4," Appl. Phys. Lett. 71, 3474 (1997).
    [CrossRef]
  18. The lambdameter is a Coherent WaveMasterTM with 0.005 nm accuracy and 0.001 nm resolution. The Fabry-Perot spectrometer has a confocal geometry with 1.5 GHz free spectral range, a finesse of 200 at 671 nm and itis not sensitive to 1 lambdam radiation.
  19. The asymetric intensity of the two frequency modes is due to the unbalanced conversion in the frequency summing crystal.
  20. In a confocal resonator the familiar formula for the mode spacing (the free spectral range, FSR= c/4L with c the speed of light, and L the length of the cavity) results from the spacing of c/2L among both the even and the odd transverse modes, and a relative dispacement of c/4L between the two classes. See also A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986), pp. 763.
  21. J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
    [CrossRef] [PubMed]
  22. The measure of the pump power coupled into the cavity is immune to spurious effects associated with the non optimized coupling of the pump beam into the optical resonator, like geometric and impedence matching.
  23. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591 (1995).
    [CrossRef]
  24. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
    [CrossRef]

2006

R. A. Nyman et al. "Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomicphysics experiments," Rev. Sci. Instrum. 77, 033105 (2006).
[CrossRef]

2004

J.-J. Zondy, D. Kolker, and N. C. Wong, "Dynamical signatures of self-phase-locking in a triply resonant optical parametric oscillator," Phys. Rev. Lett. 93, 43902 (2004).
[CrossRef]

S. Feng and O. Pfister, "Quantum interference of ultrastable twin optical beams," Phys. Rev. Lett. 92, 203601 (2004).
[CrossRef] [PubMed]

2002

J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
[CrossRef] [PubMed]

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
[CrossRef]

2001

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

1999

1998

1997

H. Karlsson and F. Laurell, "Electric field poling of flux grown KTiOPO4," Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

1996

1995

1992

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

1991

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

1990

C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, "Coherence properties of a doubly resonant monolithic optical parametric oscillator," J. Opt. Soc. Am B 7, 815 (1990).
[CrossRef]

1980

T. W. Haensch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy on a reflecting reference cavity," Opt. Commun. 35, 441 (1980).
[CrossRef]

Alexander, J. I.

Bartels, A.

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
[CrossRef]

Bosenberg, W. R.

Byer, R.

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

Byer, R. L.

Coudreau, T.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

Couillaud, B.

T. W. Haensch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy on a reflecting reference cavity," Opt. Commun. 35, 441 (1980).
[CrossRef]

Day, T.

C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, "Coherence properties of a doubly resonant monolithic optical parametric oscillator," J. Opt. Soc. Am B 7, 815 (1990).
[CrossRef]

Diddams, S. A.

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
[CrossRef]

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Fabre, C.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

Fejer, M. M.

Feng, S.

S. Feng and O. Pfister, "Quantum interference of ultrastable twin optical beams," Phys. Rev. Lett. 92, 203601 (2004).
[CrossRef] [PubMed]

Gibson, G. M.

Haensch, T. W.

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

T. W. Haensch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy on a reflecting reference cavity," Opt. Commun. 35, 441 (1980).
[CrossRef]

Hollberg, L.

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
[CrossRef]

O. Pfister, M. Muertz, J. S. Wells, L. Hollberg, and J. T. Murray, "Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4," Opt. Lett. 21, 1387 (1996).
[CrossRef] [PubMed]

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Imeshev, G.

Karlsson, H.

H. Karlsson and F. Laurell, "Electric field poling of flux grown KTiOPO4," Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

Kolker, D.

J.-J. Zondy, D. Kolker, and N. C. Wong, "Dynamical signatures of self-phase-locking in a triply resonant optical parametric oscillator," Phys. Rev. Lett. 93, 43902 (2004).
[CrossRef]

Laurell, F.

H. Karlsson and F. Laurell, "Electric field poling of flux grown KTiOPO4," Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

Maitre, A.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

Martinelli, M.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

Mason, E. J.

Muertz, M.

Murray, J. T.

Myers, L. E.

Nabors, C. D.

C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, "Coherence properties of a doubly resonant monolithic optical parametric oscillator," J. Opt. Soc. Am B 7, 815 (1990).
[CrossRef]

Nyman, R. A.

R. A. Nyman et al. "Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomicphysics experiments," Rev. Sci. Instrum. 77, 033105 (2006).
[CrossRef]

O’Brien, S.

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

Padgett, M. J.

Pfister, O.

Proctor, M.

Ramond, T. M.

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
[CrossRef]

Ricci, L.

L. Ricci et al. "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541 (1995).
[CrossRef]

Schnatz, H.

J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
[CrossRef] [PubMed]

Stenger, J.

J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
[CrossRef] [PubMed]

Tamm, C.

J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
[CrossRef] [PubMed]

Telle, H. R.

J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
[CrossRef] [PubMed]

Welch, D.

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

Wells, J. S.

Wieman, C. E.

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Wong, N. C.

J.-J. Zondy, D. Kolker, and N. C. Wong, "Dynamical signatures of self-phase-locking in a triply resonant optical parametric oscillator," Phys. Rev. Lett. 93, 43902 (2004).
[CrossRef]

E. J. Mason and N. C. Wong, "Observation of two distinct phase states in a self-phase-locked type ii phase-matched optical parametric oscillator," Opt. Lett. 23, 1733 (1998).
[CrossRef]

Yang, S. T.

C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, "Coherence properties of a doubly resonant monolithic optical parametric oscillator," J. Opt. Soc. Am B 7, 815 (1990).
[CrossRef]

Zhang, K. S.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

Zimmermann, C.

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

Zondy, J.-J.

J.-J. Zondy, D. Kolker, and N. C. Wong, "Dynamical signatures of self-phase-locking in a triply resonant optical parametric oscillator," Phys. Rev. Lett. 93, 43902 (2004).
[CrossRef]

Appl. Phys. Lett.

C. Zimmermann, T. W. Haensch, R. Byer, S. O’Brien, and D. Welch, "Second harmonic generation at 972 nm using a distributed bragg reflection semiconductor laser," Appl. Phys. Lett. 61, 2741 (1992).
[CrossRef]

H. Karlsson and F. Laurell, "Electric field poling of flux grown KTiOPO4," Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

M. Martinelli, K. S. Zhang, T. Coudreau, A. Maitre, and C. Fabre, "Ultra-low thresold cw triply resonant opo in the near infrared using periodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 3, 1 (2001).
[CrossRef]

J. Opt. Soc. Am B

C. D. Nabors, S. T. Yang, T. Day, and R. L. Byer, "Coherence properties of a doubly resonant monolithic optical parametric oscillator," J. Opt. Soc. Am B 7, 815 (1990).
[CrossRef]

Opt. Commun.

L. Ricci et al. "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541 (1995).
[CrossRef]

T. W. Haensch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy on a reflecting reference cavity," Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Lett.

T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, "Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-Ghz Ti:Sapphire femtosecond oscillator," Opt. Lett. 20, 1842 (2002).
[CrossRef]

G. Imeshev, M. Proctor, and M. M. Fejer, "Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal," Opt. Lett. 23, 165 (1998).
[CrossRef]

E. J. Mason and N. C. Wong, "Observation of two distinct phase states in a self-phase-locked type ii phase-matched optical parametric oscillator," Opt. Lett. 23, 1733 (1998).
[CrossRef]

G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, "Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy," Opt. Lett. 24, 397 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591 (1995).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, "Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3," Opt. Lett. 21, 713 (1996).
[CrossRef] [PubMed]

O. Pfister, M. Muertz, J. S. Wells, L. Hollberg, and J. T. Murray, "Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4," Opt. Lett. 21, 1387 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Feng and O. Pfister, "Quantum interference of ultrastable twin optical beams," Phys. Rev. Lett. 92, 203601 (2004).
[CrossRef] [PubMed]

J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, "Ultraprecise measurement of optical frequency ratios," Phys. Rev. Lett. 88, 073601 (2002).
[CrossRef] [PubMed]

J.-J. Zondy, D. Kolker, and N. C. Wong, "Dynamical signatures of self-phase-locking in a triply resonant optical parametric oscillator," Phys. Rev. Lett. 93, 43902 (2004).
[CrossRef]

Rev. Sci. Instrum.

R. A. Nyman et al. "Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomicphysics experiments," Rev. Sci. Instrum. 77, 033105 (2006).
[CrossRef]

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Science

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513 (1999).
[CrossRef] [PubMed]

Other

The reflectivity at 1006.5 nm and 2013 nm is higher than 99.98%, while the transmission at 671 nm is 90%. The concave mirrors have a 100 mm radius of curvature, their distance is 130 mm, and the two nonlinear crystal are aligned along this arm close to the smaller waist of the cavity. The path between the two concave mirrors passing through the plane mirrors is 400 mm long.

The measure of the pump power coupled into the cavity is immune to spurious effects associated with the non optimized coupling of the pump beam into the optical resonator, like geometric and impedence matching.

The lambdameter is a Coherent WaveMasterTM with 0.005 nm accuracy and 0.001 nm resolution. The Fabry-Perot spectrometer has a confocal geometry with 1.5 GHz free spectral range, a finesse of 200 at 671 nm and itis not sensitive to 1 lambdam radiation.

The asymetric intensity of the two frequency modes is due to the unbalanced conversion in the frequency summing crystal.

In a confocal resonator the familiar formula for the mode spacing (the free spectral range, FSR= c/4L with c the speed of light, and L the length of the cavity) results from the spacing of c/2L among both the even and the odd transverse modes, and a relative dispacement of c/4L between the two classes. See also A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986), pp. 763.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

3/2 frequency multiplier experimental setup. A continuous wave and single frequency pump laser delivering 400 mW of 1006.5 nm is converted into 40 mW radiation at 671 nm. The pump laser is resonantly coupled into a cavity where 20 mm long periodically poled KTP [17] nonlinear crystals are set so to satisfy quasi phase-matching for degenerate frequency down-conversion (OPO), and sum frequency generation between the pump and down-converted light at 2013 nm (SFG). The wedged surfaces of the crystals are cut at an angle of 100 mrad with respect to the crystal axis. The input (output) facet of the OPO (SFG) crystal is at normal incidence. The two inclined surfaces facing each other are parallel. The transverse displacement of the nonlinear crystals provides an independent control over the cavity dispersion, insuring simultaneous resonance of the two infrared fields.

Fig. 2.
Fig. 2.

Transmission spectra of the frequency multiplied light through a confocal Fabry-Perot (FP) spectrum analyzer. Displacing the nonlinear crystals transversally we tune the cavity dispersion in order to impose single frequency emission (b), or multi mode emission (a). c) The Gaussian beam profile of the 3/2 frequency multiplied output is verified by coupling the single frequency radiation mainly into the fundamental transverse mode of the FP cavity, which results in doubling the spacing among the resonance peaks [20].

Fig. 3.
Fig. 3.

Frequency multiplier amplitude stability on 3 minutes and 10 ms (inset) time timescale under single longitudinal mode emission. The measured RMS amplitude noise at full power is 1.4 % on 50 kHz bandwidth. Under multi longitudinal mode operation the amplitude stability does not not change qualitatively when measuring on the same bandwidth.

Fig. 4.
Fig. 4.

Extracted power at 671 nm as function of the pump power coupled into the cavity. The vertical gray line indicates the threshold value for a stable single frequency operation of the converter. The error bars correspond to the RMS amplitude noise.

Metrics