Abstract

We demonstrate experimentally the formation and stable propagation of bound soliton pairs in a highly nonlinear photonic crystal fiber. The bound pairs occur at a particular power as the consequence of high-order soliton fission. They propagate over long distances with constant inter-soliton frequency and time separation. During propagation, the soliton self-frequency shift causes the central frequency of the pairs to move towards longer wavelength. The formation and characteristics of the bound soliton pairs are confirmed numerically. We believe this to be the first experimental observation of such bound soliton pairs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 12,142–144 (1973).
    [Crossref]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45,1095–1098 (1980).
    [Crossref]
  3. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, (Springer Verlag, Berlin, Heidelberg, 2003).
  4. Y. S. Kivshar and G. P. Agrawal, Optical Solitons, (Academic Press, San Diego, 2003).
  5. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8,596–598 (1983).
    [Crossref] [PubMed]
  6. F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12,355–357 (1987).
    [Crossref] [PubMed]
  7. Y. Kodama and A. Hasegawa, “Effects of initial overlap on the propagation of optical solitons at different wavelengths,” Opt. Lett. 16,208–210 (1991).
    [Crossref] [PubMed]
  8. S. Chi and S. Wen, “Raman cross talk of soliton collision in a lossless fiber,” Opt. Lett. 14,1216–1218 (1989).
    [Crossref] [PubMed]
  9. B. J. Hong and C. C. Yang, “Interaction between femtosecond solitons in optical fibers,” J. Opt. Soc. Am. B 8,1114–1121 (1991).
    [Crossref]
  10. E. Feigenbaum and M. Orenstein, “Colored soliton interactions: particle-like and beyond,” Opt. Exp. 12,2193–2206 (2005).
  11. E. Feigenbaum and M. Orenstein, “Coherent interaction of colored solitons via parametric processes: modified perturbation analysis,” J. Opt. Soc. Am. B 22,1414–1423 (2005).
    [Crossref]
  12. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J.Quantum Electron. 23,510–524 (1987).
    [Crossref]
  13. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11,659–661 (1986)
    [Crossref] [PubMed]
  14. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11,662–664 (1986).
    [Crossref] [PubMed]
  15. J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19,2065–2067 (1994).
    [Crossref] [PubMed]
  16. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett., 13,392–394 (1988).
    [Crossref] [PubMed]
  17. A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).
  18. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
    [Crossref]
  19. N. Akhmediev, W. Krolikowski, and A. J. Lowery, “Influence of the Raman-effect on solitons in optical fibers,” Opt. Commun. 131,260–266 (1996).
    [Crossref]
  20. J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21,1547–1549 (1996).
    [Crossref] [PubMed]
  21. J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding: errata,” Opt. Lett. 22,484–485 (1997).
    [Crossref] [PubMed]
  22. P. St.J. Russell, “Photonic crystal fibers,” Science 299,358–362 (2003).
    [Crossref] [PubMed]
  23. J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,1135–1184 (2006).
    [Crossref]
  24. D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
    [Crossref] [PubMed]
  25. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
    [Crossref] [PubMed]
  26. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
    [Crossref] [PubMed]
  27. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14,9844–9853 (2006).
    [Crossref] [PubMed]
  28. A. Zheltikov, “Nanoscale nonlinear optics in photonic crystal fibers,” J. Opt. A 8,S47–S72 (2006).
    [Crossref]
  29. M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
    [Crossref]
  30. R. Trebino, Frequency-Resolved Optical Gaiting: the measurement of ultrashort laser pulses, (Kluwer Academic Publishers, 2000).
  31. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), 3rd ed.
  32. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25,2665–2673 (1989).
    [Crossref]
  33. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31,3086–3088 (2006).
    [Crossref] [PubMed]

2006 (4)

J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,1135–1184 (2006).
[Crossref]

A. Zheltikov, “Nanoscale nonlinear optics in photonic crystal fibers,” J. Opt. A 8,S47–S72 (2006).
[Crossref]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31,3086–3088 (2006).
[Crossref] [PubMed]

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14,9844–9853 (2006).
[Crossref] [PubMed]

2005 (3)

E. Feigenbaum and M. Orenstein, “Coherent interaction of colored solitons via parametric processes: modified perturbation analysis,” J. Opt. Soc. Am. B 22,1414–1423 (2005).
[Crossref]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

E. Feigenbaum and M. Orenstein, “Colored soliton interactions: particle-like and beyond,” Opt. Exp. 12,2193–2206 (2005).

2003 (2)

P. St.J. Russell, “Photonic crystal fibers,” Science 299,358–362 (2003).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

1997 (1)

1996 (2)

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21,1547–1549 (1996).
[Crossref] [PubMed]

N. Akhmediev, W. Krolikowski, and A. J. Lowery, “Influence of the Raman-effect on solitons in optical fibers,” Opt. Commun. 131,260–266 (1996).
[Crossref]

1994 (1)

1991 (2)

1990 (1)

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
[Crossref]

1989 (2)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25,2665–2673 (1989).
[Crossref]

S. Chi and S. Wen, “Raman cross talk of soliton collision in a lossless fiber,” Opt. Lett. 14,1216–1218 (1989).
[Crossref] [PubMed]

1988 (1)

1987 (4)

F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12,355–357 (1987).
[Crossref] [PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J.Quantum Electron. 23,510–524 (1987).
[Crossref]

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
[Crossref]

1986 (2)

1983 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45,1095–1098 (1980).
[Crossref]

1973 (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 12,142–144 (1973).
[Crossref]

Agrawal, G. P.

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31,3086–3088 (2006).
[Crossref] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), 3rd ed.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons, (Academic Press, San Diego, 2003).

Akhmediev, N.

N. Akhmediev, W. Krolikowski, and A. J. Lowery, “Influence of the Raman-effect on solitons in optical fibers,” Opt. Commun. 131,260–266 (1996).
[Crossref]

Atkin, D. M.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
[Crossref]

Bekki, N.

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25,2665–2673 (1989).
[Crossref]

Bosselaar, L.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
[Crossref]

Bredol, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
[Crossref]

Chi, S.

Coen, S.

J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,1135–1184 (2006).
[Crossref]

Dianov, E. M.

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Dudley, J.M.

J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,1135–1184 (2006).
[Crossref]

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

Feigenbaum, E.

E. Feigenbaum and M. Orenstein, “Colored soliton interactions: particle-like and beyond,” Opt. Exp. 12,2193–2206 (2005).

E. Feigenbaum and M. Orenstein, “Coherent interaction of colored solitons via parametric processes: modified perturbation analysis,” J. Opt. Soc. Am. B 22,1414–1423 (2005).
[Crossref]

Genty, G.

J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,1135–1184 (2006).
[Crossref]

Gordon, J. P.

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11,662–664 (1986).
[Crossref] [PubMed]

J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8,596–598 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45,1095–1098 (1980).
[Crossref]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

Grudinin, A. B.

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Hasegawa, A.

Y. Kodama and A. Hasegawa, “Effects of initial overlap on the propagation of optical solitons at different wavelengths,” Opt. Lett. 16,208–210 (1991).
[Crossref] [PubMed]

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett., 13,392–394 (1988).
[Crossref] [PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J.Quantum Electron. 23,510–524 (1987).
[Crossref]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 12,142–144 (1973).
[Crossref]

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, (Springer Verlag, Berlin, Heidelberg, 2003).

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19,2065–2067 (1994).
[Crossref] [PubMed]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
[Crossref]

Hong, B. J.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

Hutjens, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
[Crossref]

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

Khaidarov, D. V.

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Kivshar, Y. S.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons, (Academic Press, San Diego, 2003).

Knight, J. C.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14,9844–9853 (2006).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding: errata,” Opt. Lett. 22,484–485 (1997).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21,1547–1549 (1996).
[Crossref] [PubMed]

Kodama, Y.

Y. Kodama and A. Hasegawa, “Effects of initial overlap on the propagation of optical solitons at different wavelengths,” Opt. Lett. 16,208–210 (1991).
[Crossref] [PubMed]

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J.Quantum Electron. 23,510–524 (1987).
[Crossref]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

Korobkin, D. V.

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Krolikowski, W.

N. Akhmediev, W. Krolikowski, and A. J. Lowery, “Influence of the Raman-effect on solitons in optical fibers,” Opt. Commun. 131,260–266 (1996).
[Crossref]

Leers, D.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
[Crossref]

Lin, Q.

Lowery, A. J.

N. Akhmediev, W. Krolikowski, and A. J. Lowery, “Influence of the Raman-effect on solitons in optical fibers,” Opt. Commun. 131,260–266 (1996).
[Crossref]

Luan, F.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14,9844–9853 (2006).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
[Crossref] [PubMed]

Matsumoto, M.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, (Springer Verlag, Berlin, Heidelberg, 2003).

Mitschke, F. M.

Mollenauer, L. F.

Nazarkin, A.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

Orenstein, M.

E. Feigenbaum and M. Orenstein, “Coherent interaction of colored solitons via parametric processes: modified perturbation analysis,” J. Opt. Soc. Am. B 22,1414–1423 (2005).
[Crossref]

E. Feigenbaum and M. Orenstein, “Colored soliton interactions: particle-like and beyond,” Opt. Exp. 12,2193–2206 (2005).

Prokhorov, A. M.

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Russell, P. St.J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
[Crossref] [PubMed]

P. St.J. Russell, “Photonic crystal fibers,” Science 299,358–362 (2003).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding: errata,” Opt. Lett. 22,484–485 (1997).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21,1547–1549 (1996).
[Crossref] [PubMed]

Serkin, V. N.

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Skryabin, D. V.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14,9844–9853 (2006).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
[Crossref] [PubMed]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45,1095–1098 (1980).
[Crossref]

Tai, K.

Tappert, F.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 12,142–144 (1973).
[Crossref]

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gaiting: the measurement of ultrashort laser pulses, (Kluwer Academic Publishers, 2000).

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
[Crossref]

Wen, S.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25,2665–2673 (1989).
[Crossref]

Yang, C. C.

Yulin, A. V.

F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14,9844–9853 (2006).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

Zheltikov, A.

A. Zheltikov, “Nanoscale nonlinear optics in photonic crystal fibers,” J. Opt. A 8,S47–S72 (2006).
[Crossref]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
[Crossref]

Appl. Phys. Lett. (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 12,142–144 (1973).
[Crossref]

IEEE J. Quantum Electron (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron QE- 23,1938–1946 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25,2665–2673 (1989).
[Crossref]

IEEE J.Quantum Electron. (1)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J.Quantum Electron. 23,510–524 (1987).
[Crossref]

J. Lightwave Technol. (1)

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8,1536–1540 (1990).
[Crossref]

J. Opt. A (1)

A. Zheltikov, “Nanoscale nonlinear optics in photonic crystal fibers,” J. Opt. A 8,S47–S72 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin, and D. V. Khaidarov, “Decay of femtosecond pulses in single-mode optical-fibers,” JETP Lett. 46,221–225 (1987).

Opt. Commun. (1)

N. Akhmediev, W. Krolikowski, and A. J. Lowery, “Influence of the Raman-effect on solitons in optical fibers,” Opt. Commun. 131,260–266 (1996).
[Crossref]

Opt. Exp. (1)

E. Feigenbaum and M. Orenstein, “Colored soliton interactions: particle-like and beyond,” Opt. Exp. 12,2193–2206 (2005).

Opt. Express (1)

Opt. Lett. (11)

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31,3086–3088 (2006).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett. 21,1547–1549 (1996).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St.J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding: errata,” Opt. Lett. 22,484–485 (1997).
[Crossref] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11,659–661 (1986)
[Crossref] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11,662–664 (1986).
[Crossref] [PubMed]

J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19,2065–2067 (1994).
[Crossref] [PubMed]

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett., 13,392–394 (1988).
[Crossref] [PubMed]

J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8,596–598 (1983).
[Crossref] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12,355–357 (1987).
[Crossref] [PubMed]

Y. Kodama and A. Hasegawa, “Effects of initial overlap on the propagation of optical solitons at different wavelengths,” Opt. Lett. 16,208–210 (1991).
[Crossref] [PubMed]

S. Chi and S. Wen, “Raman cross talk of soliton collision in a lossless fiber,” Opt. Lett. 14,1216–1218 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45,1095–1098 (1980).
[Crossref]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St.J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88,173901 (2002).
[Crossref] [PubMed]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. St.J. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95,213902 (2005).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78,1135–1184 (2006).
[Crossref]

Science (2)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St.J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301,1705–1708 (2003).
[Crossref] [PubMed]

P. St.J. Russell, “Photonic crystal fibers,” Science 299,358–362 (2003).
[Crossref] [PubMed]

Other (4)

R. Trebino, Frequency-Resolved Optical Gaiting: the measurement of ultrashort laser pulses, (Kluwer Academic Publishers, 2000).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), 3rd ed.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, (Springer Verlag, Berlin, Heidelberg, 2003).

Y. S. Kivshar and G. P. Agrawal, Optical Solitons, (Academic Press, San Diego, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup: ISO, optical isolator; M1,2,3 mirrors; A, attenuator; λ/2, half-waveplate; T α 1/2, telescope; FM1, flip mirror; PM, power meter; O1,2, objectives; PCF,highly nonlinear photonic crystal fiber; PBS, polarization beam splitter; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

Dispersion of the PCF used in experiments. Inset: scanning electron micrograph of the fiber cross-section.

Fig. 3.
Fig. 3.

Spectral evolution with increasing average power. The fiber length is 44 cm and light was launched and detected with polarization parallel to the slow (A) and fast (B) axis of the fiber.

Fig. 4.
Fig. 4.

Spectral evolution with increasing power. Fiber length was 15 m. Excitation and detection parallel to the slow axis.

Fig. 5.
Fig. 5.

A-Evolution of the spectra with length. B - the spectra for the 1m (black line) and for the 15m (red line) fiber. The input power of ~180 mW (constant throughout) corresponded to the minimum spectral spacing between the solitons. Both excitation and measurement were performed parallel to the slow axis.

Fig. 6.
Fig. 6.

A typical spectrum at the output of the fiber and corresponding FROG spectrograph. The wavelength scale in spectrogram is not recalculated and presents the spectra of the output signal due to the frequency-doubling in the FROG. The white arrows indicate spectral components responsible for the sum frequency peaks.

Fig. 7.
Fig. 7.

FROG spectrographs of the soliton pair in 70 cm fiber for different power levels. The input power is increasing stepwise from image A to image D. The image D corresponds to input power of 180 mW in Fig. 3.

Fig. 8.
Fig. 8.

FROG spectrographs of the soliton pair in 150 cm fiber for different power levels. The input power is increasing stepwise from image A to image C. The image C corresponds to an input power of 180 mW in Fig. 3.

Fig. 9.
Fig. 9.

Numerical simulation of spectral evolution with increasing input average power. The laser launch efficiency is taken to be 30%. Fiber length is 44 cm.

Fig. 10.
Fig. 10.

Numerical modelling of the spectral (A,B,C) and temporal evolution (D,E,F) of launched laser pulses in 70 cm PCF for three different power levels (below, at, and above bound state formation; the input power increases stepwise from A to C). G & H: soliton splitting (G) and bound pair formation (H) after 60 cm of propagation. I: the solitons before collision at the distance of 16 cm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A ( z , τ ) z = n 2 i n + 1 β n n ! n A ( z , τ ) τ n α 2 A ( z , τ ) + ( 1 + i ω 0 τ ) ( A ( z , τ ) -∞ R ( t ' ) A ( z , τ t ' ) 2 dt ' )
R ( t ) = ( 1 f R ) δ ( t ) + f R ( q a h a ( t ) + q b h b ( t ) )
h a ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) , h b ( t ) = 2 τ b t τ b 2 exp ( t τ b ) .

Metrics