Abstract

We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
    [CrossRef] [PubMed]
  2. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  3. S. Yazdanfar, M. Kulkarni, and J. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1, 424-431 (1997).
    [CrossRef] [PubMed]
  4. V. XD. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11, 1650-1658 (2003).
    [CrossRef] [PubMed]
  5. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  6. T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
    [CrossRef] [PubMed]
  7. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006).
    [CrossRef] [PubMed]
  8. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).
  9. S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 251448-1450 (2000).
    [CrossRef]
  10. Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 2264-66 (1997).
    [CrossRef] [PubMed]
  11. A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
    [CrossRef] [PubMed]
  12. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  14. V. XD. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
    [CrossRef] [PubMed]
  15. V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004).
    [CrossRef] [PubMed]
  16. E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
    [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
    [CrossRef] [PubMed]
  18. W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
    [CrossRef]
  19. H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
    [CrossRef] [PubMed]
  20. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
    [CrossRef]
  21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
    [CrossRef] [PubMed]
  22. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 282067-2069 (2003).
    [CrossRef] [PubMed]

2006 (6)

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006).
[CrossRef] [PubMed]

D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004).
[CrossRef] [PubMed]

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (2)

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
[CrossRef]

2000 (1)

1997 (4)

Z. P. Chen, T. E. Milner, D. Dave and J. S. Nelson, "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 2264-66 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. Yazdanfar, M. Kulkarni, and J. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1, 424-431 (1997).
[CrossRef] [PubMed]

1985 (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
[CrossRef]

Adler, D. C.

Berzinski, M. E.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Bodmer, R.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

Boppart, S. A.

D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 282067-2069 (2003).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Brenzinski, M. E.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Brown, A. S.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Cable, A. E.

Cense, B.

Ch?n, E.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Chen, Z. P.

Chiu, S.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Choma, M.

Choma, M. A.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

Dave, D.

de Boer, J.

de Boer, J. F.

Efimov, I. R.

Foster, F. S.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Gordon, M.

Gordon, M. L.

Hu, Z.

Huber, R.

Izatt, J.

Izatt, J. A.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 251448-1450 (2000).
[CrossRef]

Izatt, S. D.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

Jenkins, M. W.

Jiang, J. Y.

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
[CrossRef]

Kirby, M. L.

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
[CrossRef]

Kulkarni, M.

Li, H.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Liu, G.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Lo, S.

Mao, Y.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Marcon, N. E.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004).
[CrossRef] [PubMed]

Mariampillai, A.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Marks, D. L.

D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
[CrossRef] [PubMed]

Mesud Yelbuz, T.

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

Milner, T. E.

Mok, A.

Munce, N.

Munce, N. R.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
[CrossRef]

Needles, A.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Nelson, J. S.

Nikolski, V. P.

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
[CrossRef]

Park, B. H.

Pekar, J.

Pierce, M. C.

Qi, B.

Ralston, T. S.

D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).

Reed, W. A.

Reynolds, J. J.

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
[CrossRef] [PubMed]

Rollins, A. M.

Rothenberg, F.

Roy, D.

Sarunic, M.

Schaefer, A. W.

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
[CrossRef] [PubMed]

Schnitzer, M. J.

Seng-Yue, E.

Southern, J. F.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Standish, B. A.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 282067-2069 (2003).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Thrane, L.

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

Vakoc, B.

Vitkin, I.

Vitkin, I. A.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004).
[CrossRef] [PubMed]

Watanabe, M.

Wessells, R. J.

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

White, C.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Williams, R.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Wilson, B.

Wilson, B. C.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004).
[CrossRef] [PubMed]

Wilson, D. L.

Wojtkowski, M.

Yan, M. F.

Yang, C.

Yang, V. X. D.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

V. X. D. Yang, N. Munce, J. Pekar, M. L. Gordon, S. Lo, N. E. Marcon, B. C. Wilson and I. A. Vitkin, "Micromachined array tip for multifocus fiber-based optical coherence tomography," Opt. Lett. 29,1754-1756 (2004).
[CrossRef] [PubMed]

Yang, V. XD.

Yazdanfar, S.

Yun, S.

Zhou, Y-Q.

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Circulation. (2)

M. A. Choma, S. D. Izatt, R. J. Wessells, R. Bodmer, and J. A. Izatt, "Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography," Circulation. 114, e35-e36 (2006).
[CrossRef] [PubMed]

T. Mesud Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "A new high-resolution imaging technology to study cardiac development in chick embryos," Circulation. 106, 2771 (2002).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography," IEEE Trans. Biomed. Eng. 51186-190, (2004).
[CrossRef] [PubMed]

IEEE Trans. Sonics. Ultrason. (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique," IEEE Trans. Sonics. Ultrason. 32458-464 (1985).
[CrossRef]

J. Biomed. Opt. Special Issue on Cardiovascular Photonics (1)

D. L. Marks, T. S. Ralston, and S. A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. Special Issue on Cardiovascular Photonics,  11, 021014 (2006).

Lasers Surg. Med. (1)

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, "Feasibility of Interstitial Doppler Optical Coherence Tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surg. Med. 38, 754-761 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006).
[CrossRef] [PubMed]

S. Yazdanfar, M. Kulkarni, and J. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Opt. Express 1, 424-431 (1997).
[CrossRef] [PubMed]

V. XD. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11, 1650-1658 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

V. XD. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
[CrossRef] [PubMed]

Opt. Lett. (6)

Proc. Natl. Acad. Sci. (1)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brenzinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA. (1)

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Berzinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

Ultrasound Med Biol. (1)

E. Cherin, R. Williams, A. Needles, G. Liu, C. White, A. S. Brown, Y-Q. Zhou and F. S. Foster, "Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo," Ultrasound Med Biol. 32, 683-691 (2006).
[CrossRef] [PubMed]

Supplementary Material (15)

» Media 1: MOV (219 KB)     
» Media 2: MOV (448 KB)     
» Media 3: MOV (1792 KB)     
» Media 4: MOV (1892 KB)     
» Media 5: MOV (9818 KB)     
» Media 6: MOV (12123 KB)     
» Media 7: MOV (1342 KB)     
» Media 8: MOV (1780 KB)     
» Media 9: MOV (1361 KB)     
» Media 10: MOV (1370 KB)     
» Media 11: MOV (1801 KB)     
» Media 12: MOV (14908 KB)     
» Media 13: MOV (12810 KB)     
» Media 14: MOV (3839 KB)     
» Media 15: MOV (1808 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Imaging setup. (a) SS: swept source, FC: fiber coupler, PC: polarization controller, CIR: circulator, C: collimator, M: mirror, BD: balanced detector, DAQ: data acquisition board, GM: galvo mirrors, L: lens, TD-OCT: time-domain OCT system, P:GRIN fiber probe.. (b) GRIN fiber probe positioned to image blood flow in one of the great vessels coming from the heart (tadpole in the ventral position). The TD-OCT system begins continuously acquiring data when it receives a trigger signal sent from the DAQ system of the SS-DOCT system.

Fig. 2.
Fig. 2.

Doppler optical cardiogram M-Mode data was collected from one of the two great vessels leaving the heart. Data was used to generate the optical cardiogram signal needed to retrospectively gate B-mode images. (a) Structural M-mode of great vessel. (b) Doppler M-mode of great vessel. (c) Raw optical cardiogram generated by averaging axially across the Doppler M-mode of the vessel. (d) Filtered cardiogram signal generated by filtering the raw signal with a 128th order finite impulse response low pass filter with 3dB cutoff at ~200 Hz and 80 dB stop band attenuation.

Fig. 3.
Fig. 3.

(a). Normalized phase noise measured from a diffuse stationary reflector for various spatial averaging masks (M=1, N=2 ,4, 8, 16, 32, 64). Each data set consists of measurements from 100,000 pixels and was fit with a Gaussian distribution. (b). Doppler noise floor measured in RMS when imaging stationary 0.5% Intralipid solution at 3, 6, 12, and 24 fps, or equivalently at 9, 18, 36, and 72 mm/s lateral scanning speed. The resultant images were split into 20 regions, each with different SNR for the structural OCT signal. The Doppler noise was measured in each region and plotted against the SNR. Spatial averaging mask values were {M=1, N=16} for the 3 and 6 fps images and {M=1, N=8} for the 12 and 24 fps images. (c). At optimal SNR, the minimum Doppler noise floor plotted against lateral scanning speed. For the remainder of the paper, the imaging was performed at 12 fps or 36 mm/s scanning speed.

Fig. 4.
Fig. 4.

SS-DOCT imaging of Xenopus laevis heart with real-time acquisition and display at 12 fps. (a) Cross-sectional structural movie at the level of the aortic arches (Movie figure_4a.mov, 220 kB). Vessel walls and blood pumped through the vessels are clearly seen. [Media 1] (b) Doppler movie at the same position, demonstrating flow through the vessels and the wall motion (Movie figure_4b.mov, 448 kB). RAo: right aortic arch, LAo: left aortic arch and V: pulmonary/gill vessels. [Media 2]

Fig. 5.
Fig. 5.

Optical cardiogram gated movies at the same position as shown in Fig. 4 with an effective frame rate of 1000 fps, but played back at 30 fps. Sliding window temporal averaging was used to improve SNR. (a) Structural movie with a sliding window over 3 frames (Movie figure_5a.mov, 1793 kB). [Media 3] (b) Doppler movie with a sliding window over 5 frames (Movie figure_5b.mov, 1892 kB). Small artefacts (see discussion) contribute to the jittering motion, more prominently seen in the structural movie. Note the improved Doppler movie with a decreased noise level and more defined aliasing rings through the RAo and LAo. Notice the difference in Doppler shift between the blood flow and the vessel wall motion, both of which are present through out the cardiac cycle and visualized with high temporal resolution. Since the frame acquisition time is 83 ms, and the effective frame rate is 1000 fps, spatial-temporal artefacts are also present. These are demonstrated in (b), such as the right to left “flash” of red shifted Doppler frequencies in the vessel wall during the transition from late diastole to early systole, when the aortic arches move rapidly in the dorsal (downward) direction. The spatial-temporal effects are also depicted in Fig. 6, with data reconstruction in the x-t plane. [Media 4]

Fig. 6.
Fig. 6.

Reconstructed 1000 fps data in the x-t plane, played back as movies through the y axis. (a) Structure movie (Movie figure_6a.mov, 4079 kB). [Media 5] (b) Doppler movie (Movie figure_6b.mov, 5309 kB). LD: late diastole, ES: early systole, PS: peak systole, LS: late systole, ED: early diastole. Equal-temporal lines (dash) every 100 ms are drawn. Note the spatial-temporal effects occur in the orientation parallel to the equal-temporal lines, as expected. Black arrow heads indicate the original 12 fps data acquisition time points, which are much more sparse when compared to the gated data. The fast hemodynamic changes during the cardiac cycle, especially during ES and PS phases, are better visualized with the gated data, demonstrating the rapid acceleration of flow from approximately 0 to 22 kHz (0 to 17.3 radians) Doppler shift within 60 ms. [Media 6]

Fig. 7.
Fig. 7.

Optical cardiogram gated structural movie (Movie figure_7a.mov, 1343 kB) at the level of truncus arteriosis (TA) branching into the left and right aortic arches (LAo, RAo) during early systolic (a) and peak systolic [Media 7] (b) phases of the cardiac cycle at 45 ms and 160 ms, respectively. The image acquisition is at 12 fps, the effective frame rate is 45 fps, and the movies are played back at 30 fps. The corresponding Doppler movies (Movie figure_7b.mov, 1780 kB) are shown in (a*) and (b*). These are shown without any threshold or spatial filtering to demonstrate the original system performance. Most of the noise in the Doppler background occurs at low structure intensity regions, which can be removed through simple thresholding performed in real-time. [Media 8]

Fig. 8.
Fig. 8.

Optical cardiogram gated structural movie (Movie figure_8a.mov, 1362 kb ) at the level of spiral valve (SV) and atrio-ventricular valve (AVv) during peak systolic (a) and diastolic [Media 9] (b) phases of the cardiac cycle at 160 ms and 775 ms, respectively. Imaging conditions are identical to Fig. 7 and the corresponding Doppler movie (Movie figure_8b.mov, 1809 kB) is shown in (a*) and (b*). While the truncus arteriosis (TA) is within the imaging plane for the entire duration, the central ridge of the SV is only visible during the systolic phase due to the complex motion of the TA (as shown in Fig. 10). The blood flow (F) around the central ridge of SV is clearly visible during systole. In diastole, the atrium (A) provides blood flow (open arrow) to the ventricle (V) through the AVv, which is more prominent during atrial contraction (AC). [Media 10]

Fig. 9.
Fig. 9.

Optical cardiogram gated structural movie (Movie figure_9a.mov, 1370 kB ) at the level of ventricle (V) and ventricular outflow tract (VOT) during systolic (a) and diastolic [Media 11] (b) phases of the cardiac cycle at 364 ms and 820 ms, respectively. Imaging condition is identical to Fig. 7 and the corresponding Doppler movies (Movie figure_9b.mov, 1802 kB) are shown in (a*) and (b*). During systole, the blood flow in the VOT can be visualized, which is continuous with that in the TA. Ventricular trabeculae (VT) are also visible during systole. In diastole, blood flows into the ventricle and fills the space in between the trabeculae. This is demonstrated by the inter-trabecular blood flow (ITBF) in the Doppler image. [Media 12]

Fig. 10.
Fig. 10.

4D surface reconstruction (Movie figure_10.mov, 14908 kB) of the tadpole heart demonstrating the complex cardiac motion, and the relative position of the various components (V: ventricle, TA: truncus arteriosis, RA: right atrium, RAo: right aortic arch, LAo: left aortic arch, LA: left atrium) of the heart. [Media 13]

Fig. 11.
Fig. 11.

Doppler shift within the tadpole heart during mid-systolic phase of the cardiac cycle, presented as a movie slice (Movie figure_11.mov, 12811 kB) moving through the heart in the ventral to dorsal direction. The surface of the heart is rendered semi-transparent to demonstrate the complex blood flow pattern in 3D. [Media 14]

Fig. 12.
Fig. 12.

Arbitrary oblique slice through the heart (Movie figure_12.mov, 3839 kB) to demonstrate the advantage of 4D Doppler imaging data set. Here the data visualization plane is chosen to be perpendicular to the TA for the majority of the cardiac cycle. Blood flow through the SV and ITBF in the ventricle are shown to illustrate the complex blood flow pattern. [Media 15]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S 2 = 1 MN m = 1 M n = 1 N [ I m , n 2 + Q m , n 2 ]
Δ ϕ = arctan { 1 M ( N 1 ) m = 1 M n 1 N 1 ( I m , n + 1 Q m , n Q m , n + 1 I m , n ) 1 M ( N 1 ) m = 1 M n = 1 N 1 ( Q m , n + 1 Q m , n + I m , n + 1 I m , n ) }

Metrics