Abstract

We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 μm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10-8 over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtröder, Laser spectroscopy, 3d ed. (Springer, Berlin, 2003).
  2. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, "Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine," Opt. Lett. 17, 1204-1206 (1992).
    [CrossRef] [PubMed]
  3. P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
    [CrossRef]
  4. P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
    [CrossRef]
  5. G. J. Koch, M. Petros, J. Yu, and U. N. Singh, "Precise frequency control of a single-frequency pulsed Ho:Tm:YLF laser," Appl. Opt. 41, 1718-1721 (2002).
    [CrossRef] [PubMed]
  6. K. Ertel, H. Linné, and J. Bösenberg, "Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation," Appl. Opt. 44, 5120-5126 (2005).
    [CrossRef] [PubMed]
  7. J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
    [CrossRef]
  8. R. L. Byer, "Diode laser-pumped solid-state lasers," Science 239, 742-747 (1988).
    [CrossRef] [PubMed]
  9. J. A. Keszenheimer, E. J. Balboni, and J. J. Zayhowski, "Phase-locking of 1.32 μm microchip lasers through the use of pump-diode modulation," Opt. Lett. 17, 649-651 (1992).
    [CrossRef] [PubMed]
  10. P. Thony and E. Molva, "1.55 μm-wavelength cw microchip lasers," OSA TOPS on Advanced Solid-State Lasers Vol. 1, S. A. Payne and C. Pollock, Eds., (Optical Society of America, Washington DC, 1996), pp. 296-300.
  11. M. Heurs, V. M. Quetschke, B. Willke, K. Danzmann, and I. Freitag, "Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique," Opt. Lett. 29, 2148-2150 (2004).
    [CrossRef] [PubMed]
  12. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 μm," Opt. Lett. 30, 2418-2420 (2005).
    [CrossRef] [PubMed]
  13. L. Morvan, M. Alouini, J. Bourderionnet, J. Le Gouët, D. Dolfi, and J. P. Huignard, "Widely tunable two-frequency Nd:YAG laser," in CLEO/QELS and PhAST, Technical Digest (Optical Society of America, 2005), paper CF01.
  14. M. Abramowitz and I. E. Stegun, Handbook of mathematical functions, (Dover, New York, 1965).
  15. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, "Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
    [CrossRef]
  16. V. Lupei, G. Aka, and D. Vivien, "Highly efficient 0.84 slope efficiency, 901 nm, quasi-two-level laser emission of Nd in strontium lanthanum aluminate," Opt. Lett. 31, 1064-1066 (2006).
    [CrossRef] [PubMed]
  17. N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, "Two-frequency Er-Yb:glass microchip laser passively Q-switched by a Co:ASL saturable absorber," Opt. Lett. 28, 328-330 (2003).
    [CrossRef] [PubMed]
  18. F. Imkenberg, J. Barenz, H. D. Tholl, A. Malinowski, K. Furusawa, and D. J. Richardson, "Microchip laser master-oscillator Er/Yb-doped fiber-power-amplifier emitting 158 μJ pulses with a duration of 4.5 ns," Proc. CLEO-Europe 2003, 317 (2003), paper CL5-6.
  19. A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006).
    [CrossRef]
  20. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  21. J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005).
    [CrossRef] [PubMed]

2006 (3)

2005 (4)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

1999 (1)

J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
[CrossRef]

1997 (1)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

1992 (2)

1988 (1)

R. L. Byer, "Diode laser-pumped solid-state lasers," Science 239, 742-747 (1988).
[CrossRef] [PubMed]

Agnesi, A.

A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006).
[CrossRef]

Aka, G.

Alcock, A. J.

Amon, A.

Arie, A.

Balboni, E. J.

Bava, E.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Bernard, J. E.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Bösenberg, J.

Bretenaker, F.

Brunel, M.

Byer, R. L.

Chepurov, S.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Czajkowski, A.

Danzmann, K.

De Natale, P.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

Ertel, K.

Ferrand, B.

Freitag, I.

Fulbert, L.

Galzerano, G.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

Gustafson, E. K.

Hald, J.

Henningsen, J.

Heurs, M.

Keszenheimer, J. A.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Koch, G. J.

Lai, N. D.

Laporta, P.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

Linné, H.

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

Lupei, V.

Madej, A. A.

Marano, M.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

Petersen, J. C.

Petros, M.

Piccinno, G.

A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006).
[CrossRef]

Pirzio, F.

A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006).
[CrossRef]

Quetschke, V. M.

Reali, G.

A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006).
[CrossRef]

Russell, P. St. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Schiller, S.

Singh, U. N.

Svelto, C.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

Taccheo, S.

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

Vallet, M.

Vivien, D.

Willke, B.

Yu, J.

Zayhowski, J. J.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997).
[CrossRef]

A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001).
[CrossRef]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. (1)

J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
[CrossRef]

Science (1)

R. L. Byer, "Diode laser-pumped solid-state lasers," Science 239, 742-747 (1988).
[CrossRef] [PubMed]

Other (5)

P. Thony and E. Molva, "1.55 μm-wavelength cw microchip lasers," OSA TOPS on Advanced Solid-State Lasers Vol. 1, S. A. Payne and C. Pollock, Eds., (Optical Society of America, Washington DC, 1996), pp. 296-300.

L. Morvan, M. Alouini, J. Bourderionnet, J. Le Gouët, D. Dolfi, and J. P. Huignard, "Widely tunable two-frequency Nd:YAG laser," in CLEO/QELS and PhAST, Technical Digest (Optical Society of America, 2005), paper CF01.

M. Abramowitz and I. E. Stegun, Handbook of mathematical functions, (Dover, New York, 1965).

F. Imkenberg, J. Barenz, H. D. Tholl, A. Malinowski, K. Furusawa, and D. J. Richardson, "Microchip laser master-oscillator Er/Yb-doped fiber-power-amplifier emitting 158 μJ pulses with a duration of 4.5 ns," Proc. CLEO-Europe 2003, 317 (2003), paper CL5-6.

W. Demtröder, Laser spectroscopy, 3d ed. (Springer, Berlin, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental set-up. LD, pump laser diode; L1,2, lenses; OI, optical isolator; D, photodiode; ϵ,error signal; Ω, modulation frequency. Inset: experimental absorption spectrum of 13C2H2 recorded from 1532.5 to 1537.5 nm by passing light from an amplified-spontaneous emission source at 1.53 μm through the cell. P-lines of interest here are labeled from 1 to 6.

Fig. 2.
Fig. 2.

(a) Dual-polarization optical spectrum. Optical spectrum analyzer resolution bandwidth is 0.1 nm. Inset: schematics of the composite microchip. (b) Electrical power spectrum of the beat note at 40 GHz obtained by sending the output beam through a polarizer on a 45 GHz-bandwidth photodiode (resolution bandwidth is 100 kHz).

Fig. 3.
Fig. 3.

Frequency response to pump-power modulation. Dots: experimental points; full line: theoretical curve using Eq.(4) with the parameters given in text.

Fig. 4.
Fig. 4.

(a) Transmission of the cell while slowly tuning the extraordinary wavelength around the P(5) line. (b) Corresponding open-loop error signal (averaged over 10 scans). (c) Long-term frequency fluctuations, as derived from the closed-loop error signal.

Fig. 5.
Fig. 5.

Electrical power spectrum of the beat note, recorded over 2 hours holding the peak maximum.(a) free-running. (b) servo-loop closed.

Fig. 6.
Fig. 6.

(a) Q-switched laser optical spectrum with a 0.1 nm resolution bandwidth. It is longitudinally monomode. Inset: microchip laser structure. (b) Typical pulse train. Inset: temporal zoom on one pulse.

Fig. 7.
Fig. 7.

(a) Open-loop error signal obtained when the laser wavelength is pump-power tuned around the P(3) line. (b) Frequency difference between laser frequency V and the targeted 13C2H2 absorption line frequency Vabs, as deduced from ϵ. The loop is closed at 21 min.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ o , e = V o , e L o , e [ n a L a ( 1 n a n a T + α a ) + n o , e L b ( 1 n o , e n o , e T + α o , e ) ]
dT dP = κ 4 π ( k a L a + k b L b ) Ci 2 ( Ω Ω o ) + ( π 2 Si ( Ω Ω o ) ) 2 .
lim Ω 0 dT dP κ 4 π ( k a L a + k b L b ) [ 0.58 + Ln ( 2 r b 2 ( r m 2 + r p 2 ) ) ] .
dv o , e dP ( Ω ) = Λ o , e dT dP ( Ω ) .

Metrics