Abstract

The characteristics of a dual-wavelength injection-locked pulsed laser are systematically studied. A simple and effective model is proposed to quantitatively study this type of laser system. It is shown that the model precisely predicts the performance of such a system over a wide spectral region and a full dynamic range. Furthermore, the results confirm the accuracy of the assumption regarding the homogeneous broadening in Ti:sapphire lasers, and also prove that competition between the two wavelength components does not induce instability.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Park, G. Giuliani, and R. L. Byer, "Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking," Opt. Lett. 5, 96 - 98 (1980).
    [CrossRef] [PubMed]
  2. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
    [CrossRef] [PubMed]
  3. J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, "Sideband generation using strongly driven Raman coherence in solid hydrogen," Phys. Rev. Lett. 85, 2474 - 2477 (2000).
    [CrossRef] [PubMed]
  4. R. M. Measures, "Laser Remote Chemical Analysis," (Wiley, New York, 1988).
  5. M. Katsuragawa and T. Onose, "Dual-Wavelength Injection-Locked Pulsed Laser," Opt. Lett. 30, 2421 - 2423 (2005).
    [CrossRef] [PubMed]
  6. M. Katsuragawa and T. Onose, "Dual-Wavelength Injection-Locked Pulsed Laser," Japan Patent Application Number 2004-56879 (March 1, 2004).
  7. T. D. Raymond and A. V. Smith, "Two-frequency injection-seeded Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1734 - 1737 (1995).
    [CrossRef]
  8. D. C. Kao, T. J. Kane, and L. J. Mullen, "Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tenability up to 60 GHz by dual seed injection," Opt. Lett. 29, 1203 - 1205 (2004).
    [CrossRef] [PubMed]
  9. C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
    [CrossRef]
  10. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B. 3, 125 - 133 (1986).
    [CrossRef]
  11. N. Saito, S. Wada, and H. Tashiro, "Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser," J. Opt. Soc. Am. B 18, 1288-1296 (2001).
    [CrossRef]
  12. M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, "Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands," Opt. Express 13, 5628 - 5633 (2005).
    [CrossRef] [PubMed]

2005 (2)

2004 (1)

2001 (1)

2000 (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, "Sideband generation using strongly driven Raman coherence in solid hydrogen," Phys. Rev. Lett. 85, 2474 - 2477 (2000).
[CrossRef] [PubMed]

1999 (1)

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

1995 (1)

T. D. Raymond and A. V. Smith, "Two-frequency injection-seeded Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1734 - 1737 (1995).
[CrossRef]

1986 (1)

P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B. 3, 125 - 133 (1986).
[CrossRef]

1980 (1)

Byer, R. L.

Fry, E. S.

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Giuliani, G.

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, "Sideband generation using strongly driven Raman coherence in solid hydrogen," Phys. Rev. Lett. 85, 2474 - 2477 (2000).
[CrossRef] [PubMed]

Harris, S. E.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

Kane, T. J.

Kao, D. C.

Katsuragawa, M.

Le Kien, F.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, "Sideband generation using strongly driven Raman coherence in solid hydrogen," Phys. Rev. Lett. 85, 2474 - 2477 (2000).
[CrossRef] [PubMed]

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, "Sideband generation using strongly driven Raman coherence in solid hydrogen," Phys. Rev. Lett. 85, 2474 - 2477 (2000).
[CrossRef] [PubMed]

Liao, Y.

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Misawa, K.

Moulton, P. F.

P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B. 3, 125 - 133 (1986).
[CrossRef]

Mullen, L. J.

Nicolaescu, R.

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Onose, T.

Pan, X. J.

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Park, Y. K.

Raymond, T. D.

T. D. Raymond and A. V. Smith, "Two-frequency injection-seeded Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1734 - 1737 (1995).
[CrossRef]

Saito, N.

Smith, A. V.

T. D. Raymond and A. V. Smith, "Two-frequency injection-seeded Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1734 - 1737 (1995).
[CrossRef]

Sokolov, A. V.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

Tashiro, H.

Tian, C.

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Wada, S.

Walker, D. R.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

Walter, T.

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Yavuz, D. D.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

Yin, G. Y.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

Yokoyama, K.

IEEE J. Quantum. Electron. (1)

T. D. Raymond and A. V. Smith, "Two-frequency injection-seeded Nd:YAG laser," IEEE J. Quantum. Electron. 31, 1734 - 1737 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B. 3, 125 - 133 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

C. Tian, T. Walter, R. Nicolaescu, X. J. Pan, Y. Liao, and E. S. Fry, "Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser," Opt. Lett 24, 1496 - 1498 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562 - 565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, "Sideband generation using strongly driven Raman coherence in solid hydrogen," Phys. Rev. Lett. 85, 2474 - 2477 (2000).
[CrossRef] [PubMed]

Other (2)

R. M. Measures, "Laser Remote Chemical Analysis," (Wiley, New York, 1988).

M. Katsuragawa and T. Onose, "Dual-Wavelength Injection-Locked Pulsed Laser," Japan Patent Application Number 2004-56879 (March 1, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Conceptual schematic of the dual-wavelength injection-locked pulsed laser. Ti:s: titanium sapphire laser crystal, PZT: piezoelectric transducer, OC: output coupler. The insets show the reflectivity of the output coupler as a function of wavelength and a typical spectrum for dual-wavelength injection-locked pulsed output, respectively.

Fig. 2.
Fig. 2.

Frequency dependence of the effective gain coefficient, G(Λ) (normalized at the peak). Circles are the effective gains reduced from the model with one wavelength fixed at 784.4062 nm (solid circle). Lorentz fitting is shown by the solid curve, together with the dotted curves but shifted by ±1% . Blue curve is reported in Ref. 10.

Fig. 3.
Fig. 3.

Seed power ratios giving equal pulsed outputs for various combinations of the two wavelengths with one wavelength fixed at 784.4062 nm (solid circle). The behavior predicted from the model is shown by the solid curve, together with the blue dotted curves representing shifts by ±1% . The circles are measured values.

Fig. 4.
Fig. 4.

Control of the pulsed output ratios of the two wavelengths by adjusting the seed power ratios. Three cases are shown by the curves (from the model) and circles (measured). Black curve and circles; Λ1: 784.4043 nm, Λ2: 807.6311 nm. Green curve and circles: Λ1: 784.4053 nm, Λ2: 815.9666 nm. Blue curve and circles; Λ1: 784.4063 nm, Λ2: 764.2493 nm..

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d Δ N ( t ) dt = Δ N ( t ) { G ( Λ 1 ) n Λ 1 ( t ) + G ( Λ 2 ) n Λ 2 ( t ) + 1 τ F }
d n Λ 1 ( t ) dt = Δ N ( t ) G ( Λ 1 ) n Λ 1 ( t ) n Λ 1 ( t ) τ c ( Λ 1 ) + n ΛLS
d n Λ 2 ( t ) dt = Δ N ( t ) G ( Λ 2 ) n Λ 2 ( t ) n Λ 2 ( t ) τ c ( Λ 2 ) + n Λ 2 s

Metrics