Abstract

A tunable multi-wavelength filter can be realized in periodically poled LiNbO3 by using a local-temperature-control technique. In this paper, a tunable single-wavelength and double-wavelength filter of this kind is experimentally demonstrated. In our experiment, the output transmissivity peaks of the filter can be tuned to any wavelengths by properly setting the local temperature distribution along the sample. The dependence between the wavelength shift and temperature change is Δλ/ΔT≈−0.598nm/°C. The wavelength tuning range of such filter is determined by the tuning range of the temperature control device according to this Δλ/ΔT relation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, "Quasi-phase matched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
    [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillation in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  3. K. Mizuuchi and K. Yamamoto, "Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts," Opt. Lett. 23, 1880-1882 (1998).
    [CrossRef]
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  5. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
    [CrossRef] [PubMed]
  6. J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
    [CrossRef]
  7. L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).
  8. Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
    [CrossRef]
  9. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  10. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (John Wiley & Sons, New York, 1984), Chap. 5.

2006 (1)

L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).

2005 (1)

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

2003 (3)

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

1998 (1)

1997 (2)

R. L. Byer, "Quasi-phase matched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

1995 (1)

Bosenberg, W. R.

Byer, R. L.

Chen, L. J.

L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).

Chen, X. F.

L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Chen, Y. L.

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

Chen, Y. P.

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

Jundt, D. H.

Jung, C.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Ko, D.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Lee, J.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Lee, Y. L.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Mizuuchi, K.

Myers, L. E.

Noh, Y.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Pierce, J. W.

Shi, J. H.

L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Xia, Y. X.

L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

Yamamoto, K.

Yu, B.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Yu, T. J.

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Zhu, Y. M.

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

L. J. Chen, J. H. Shi, X. F. Chen, and Y. X. Xia, "Photovoltaic effect in a periodically poled lithium niobate Solc-type wavelength filter," Appl. Phys. Lett. 88, 1211118 (2006).

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, and D. Ko, "Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique," Appl. Phys. Lett. 86, 011104 (2005).
[CrossRef]

Electron. Lett. (1)

J. H. Shi, X. F. Chen, Y. P. Chen, Y. M. Zhu, Y. X. Xia, Y. L. Chen, "Observation of Solc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

J. Nonlin. Opt. Phys. Mater. (1)

R. L. Byer, "Quasi-phase matched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Opt. Lett. (3)

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (John Wiley & Sons, New York, 1984), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The schematic diagram of the experimental setup

Fig. 2.
Fig. 2.

Tunable single-wavelength filter realized in PPLN by setting the two Peltier devices at the same temperature. The symboled points at left (right) are the measured peak of the filter at 23.50 °C (15.20 °C), and the central wavelength is 1542.192nm (1546.992nm). The solid curves with the A1 parameter equal to 4.9048 (4.9057) show the theoretical simulations before (after) the correction for A1.

Fig. 3.
Fig. 3.

Tunable double-wavelength filter realized in PPLN by applying a two-section pattern temperature distribution along the sample. In the first figure, under a [26.1 21.2] °C pattern temperature distribution, the double peaks were at 1540.616nm and 1543.63nm, and under a [34.8 12.4] °C pattern temperature distribution, the double peaks were tuned to 1538.562nm and 1545.6845nm, for the symmetrical case. In the second figure, under a [32.1 22.9] °C pattern temperature distribution, the double peaks were set to 1537.078nm and 1542.763nm, for the arbitrary case.

Fig.4.
Fig.4.

The relationship between the central wavelength of the filter and the working temperature. The symboled line is the experimental measurement, and the solid line represents the theoretical calculation from Eq. (3) but with the new A1 parameter after our correction.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ v = 1 2 v + 1 ( n o n e ) Λ , v = 0,1,2 . . . ,
Δ λ 1 2 = 1.60 λ 0 N ,
n 2 = A 1 + A 2 + B 1 F λ 2 ( A 3 + B 2 F ) 2 + B 3 F A 4 λ 2
dT = Λ × ( d n o λ T dT d n e λ T dT )

Metrics