Abstract

Photopolymers are interesting materials to obtain high-quality performance for the volume holographic data storage with a low noise and high diffraction efficiency. In this paper, the recording of holographic diffraction gratings with a spatial frequency of approximately 1940lines/mm in photopolymerizable epoxy resin materials is experimentally demonstrated. Diffraction efficiency near 92% and an energetic sensitivity of 11.7×10-3cm2/J are achieved by designing the proper structure of matrix and also optimizing photopolymer compositions. The effect of photopolymer compositions on the fundamental optical properties is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112,449–463 (2001).
    [CrossRef]
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92,1231–1280 (2004).
    [CrossRef]
  3. L. Dhar, “High-performance polymer recording materials for holographic data storage,” MRS Bull. 31,324–328 (2006).
    [CrossRef]
  4. R. M. Shelby, D. A. Waldman, and R. T. Ingwall, “Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media,” Opt. Lett. 25,713–715 (2000).
    [CrossRef]
  5. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78,1490–1492 (2001).
    [CrossRef]
  6. M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt. Lett. 24,658–660 (1999).
    [CrossRef]
  7. L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, and A. Fimia, “Acrylamide-N,N’-methylenebisacrylamide silica glass holographic recording material,” Opt. Express 12,1780–1787 (2004).
    [CrossRef] [PubMed]
  8. G. Ramos, A. A. Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43,4018–4024 (2004).
    [CrossRef] [PubMed]
  9. D. A. Waldman, H. -Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41,497–514 (1997).
  10. D. A. Waldman, C. I. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100bits/sq. micron,” Proc. SPIE 5216,10–25 (2003).
    [CrossRef]
  11. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81,4121–4123 (2002).
    [CrossRef]
  12. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83,410–412 (2003).
    [CrossRef]
  13. W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106 (2005).
  14. C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
    [CrossRef]
  15. F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
    [CrossRef]
  16. T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12,1431–1438 (2000).
    [CrossRef]
  17. T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy-photopolymer composites: thick recording media for holographic data storage,” Proc. SPIE 4296,259–266 (2001).
    [CrossRef]
  18. B. P. Iguanero, A. O. Perez, and I. F. Tapia, “Holographic material film composed by Norland Noa 65 adhesive,” Opt. Mater. 29,225–232 (2002).
    [CrossRef]
  19. W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14,8967–8973 (2006).
    [CrossRef] [PubMed]
  20. M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
    [CrossRef]
  21. H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
    [CrossRef]
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Technol. J. 48,2909–2947 (1969).
  23. W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix,” Opt. Mater. accepted (2006).
  24. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
    [CrossRef]

2006 (4)

L. Dhar, “High-performance polymer recording materials for holographic data storage,” MRS Bull. 31,324–328 (2006).
[CrossRef]

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix,” Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14,8967–8973 (2006).
[CrossRef] [PubMed]

2005 (2)

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106 (2005).

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

2004 (3)

2003 (3)

D. A. Waldman, C. I. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100bits/sq. micron,” Proc. SPIE 5216,10–25 (2003).
[CrossRef]

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83,410–412 (2003).
[CrossRef]

2002 (3)

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81,4121–4123 (2002).
[CrossRef]

B. P. Iguanero, A. O. Perez, and I. F. Tapia, “Holographic material film composed by Norland Noa 65 adhesive,” Opt. Mater. 29,225–232 (2002).
[CrossRef]

2001 (3)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112,449–463 (2001).
[CrossRef]

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78,1490–1492 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy-photopolymer composites: thick recording media for holographic data storage,” Proc. SPIE 4296,259–266 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

1997 (1)

D. A. Waldman, H. -Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41,497–514 (1997).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Technol. J. 48,2909–2947 (1969).

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92,1231–1280 (2004).
[CrossRef]

Bastiaansen, C. W. M.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Belendez, A.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Belenguer, T.

Blaya, S.

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Boyd, J. E.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy-photopolymer composites: thick recording media for holographic data storage,” Proc. SPIE 4296,259–266 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12,1431–1438 (2000).
[CrossRef]

Broer, D. J.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Butler, C. I.

D. A. Waldman, C. I. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100bits/sq. micron,” Proc. SPIE 5216,10–25 (2003).
[CrossRef]

Calvo, M. L.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78,1490–1492 (2001).
[CrossRef]

Carretero, L.

Cheben, P.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78,1490–1492 (2001).
[CrossRef]

Chen, Z.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

Colvin, V. L.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy-photopolymer composites: thick recording media for holographic data storage,” Proc. SPIE 4296,259–266 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12,1431–1438 (2000).
[CrossRef]

del Monte, F.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

G. Ramos, A. A. Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43,4018–4024 (2004).
[CrossRef] [PubMed]

Dhar, L.

L. Dhar, “High-performance polymer recording materials for holographic data storage,” MRS Bull. 31,324–328 (2006).
[CrossRef]

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt. Lett. 24,658–660 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Escuti, M. J.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Fimia, A.

Gallego, S.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Gan, F.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

Garcia, C.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Heesch, C. V.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Herrero, A. A.

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92,1231–1280 (2004).
[CrossRef]

Horner, M. G.

D. A. Waldman, H. -Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41,497–514 (1997).

Hou, L.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

Huang, M.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

Iguanero, B. P.

B. P. Iguanero, A. O. Perez, and I. F. Tapia, “Holographic material film composed by Norland Noa 65 adhesive,” Opt. Mater. 29,225–232 (2002).
[CrossRef]

Ingwall, R. T.

Jeong, Y. -C.

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix,” Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14,8967–8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106 (2005).

Kim, W. S.

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14,8967–8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix,” Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106 (2005).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Technol. J. 48,2909–2947 (1969).

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81,4121–4123 (2002).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112,449–463 (2001).
[CrossRef]

Levy, D.

Li, H. -Y. S.

D. A. Waldman, H. -Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41,497–514 (1997).

Loos, J.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Martinez, O.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

Murciano, A.

Neipp, C.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83,410–412 (2003).
[CrossRef]

Nussbaumer, R.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

O’Neill, F. T.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112,449–463 (2001).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92,1231–1280 (2004).
[CrossRef]

Ortuno, M.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Park, J. -K.

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14,8967–8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix,” Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106 (2005).

Pascual, I.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Patel, S. S.

Perez, A. O.

B. P. Iguanero, A. O. Perez, and I. F. Tapia, “Holographic material film composed by Norland Noa 65 adhesive,” Opt. Mater. 29,225–232 (2002).
[CrossRef]

Raguin, D. H.

D. A. Waldman, C. I. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100bits/sq. micron,” Proc. SPIE 5216,10–25 (2003).
[CrossRef]

Ramos, G.

Rodrigo, J. A.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

Sanchez, C.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Schilling, M. L.

Schnoes, M. G.

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel, and P. Wiltzius, “Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium,” Opt. Lett. 24,658–660 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Shelby, R. M.

Sheridan, J. T.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112,449–463 (2001).
[CrossRef]

Suzuki, N.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81,4121–4123 (2002).
[CrossRef]

Tapia, I. F.

B. P. Iguanero, A. O. Perez, and I. F. Tapia, “Holographic material film composed by Norland Noa 65 adhesive,” Opt. Mater. 29,225–232 (2002).
[CrossRef]

Tomita, Y.

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83,410–412 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81,4121–4123 (2002).
[CrossRef]

Trentler, T. J.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy-photopolymer composites: thick recording media for holographic data storage,” Proc. SPIE 4296,259–266 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12,1431–1438 (2000).
[CrossRef]

Ulibarrena, M.

Waldman, D. A.

D. A. Waldman, C. I. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100bits/sq. micron,” Proc. SPIE 5216,10–25 (2003).
[CrossRef]

R. M. Shelby, D. A. Waldman, and R. T. Ingwall, “Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media,” Opt. Lett. 25,713–715 (2000).
[CrossRef]

D. A. Waldman, H. -Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41,497–514 (1997).

Wiltzius, P.

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Yao, H.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

Adv. Funct. Mater. (1)

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15,1623–1629 (2005).
[CrossRef]

Adv. Mater. (1)

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18,2014–2017 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76,851–857 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81,4121–4123 (2002).
[CrossRef]

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83,410–412 (2003).
[CrossRef]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage,” Appl. Phys. Lett. 87, 012106 (2005).

P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78,1490–1492 (2001).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73,1337–1339 (1998).
[CrossRef]

Bell Sys. Technol. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Technol. J. 48,2909–2947 (1969).

Chem. Mater. (1)

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12,1431–1438 (2000).
[CrossRef]

J. Imaging Sci. Technol. (1)

D. A. Waldman, H. -Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41,497–514 (1997).

Mater. Lett. (1)

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56,3–8 (2002).
[CrossRef]

MRS Bull. (1)

L. Dhar, “High-performance polymer recording materials for holographic data storage,” MRS Bull. 31,324–328 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (2)

B. P. Iguanero, A. O. Perez, and I. F. Tapia, “Holographic material film composed by Norland Noa 65 adhesive,” Opt. Mater. 29,225–232 (2002).
[CrossRef]

W. S. Kim, Y. -C. Jeong, and J. -K. Park, “Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix,” Opt. Mater. accepted (2006).

Optik (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112,449–463 (2001).
[CrossRef]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92,1231–1280 (2004).
[CrossRef]

Proc. SPIE (2)

D. A. Waldman, C. I. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100bits/sq. micron,” Proc. SPIE 5216,10–25 (2003).
[CrossRef]

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy-photopolymer composites: thick recording media for holographic data storage,” Proc. SPIE 4296,259–266 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Molecular structures of component materials for photopolymer (a) PPGDGE (b) PEI (c) AA (d) TEA (e) YE

Fig. 2.
Fig. 2.

The optical properties of photopolymers with different content of sensitizer (a) Diffraction efficiency behavior of photopolymers with various amount of YE (b) Transmission efficiency behavior of photopolymers with various amount of YE

Fig. 3.
Fig. 3.

The diffraction efficiency behavior of photopolymers with various TEA contents

Fig. 4.
Fig. 4.

FT-IR analysis in ATR mode of photopolymer with variation of TEA, which shows the interaction between AA and TEA

Fig. 5. (a).
Fig. 5. (a).

Schematic figure of asymmetric recording, where the long dash line is a K-vector of incident beams and short dash line is perpendicular to the film surface. (b). Angular response of photopolymer with film thickness, 81μm The asymmetric angle is represented as x in the ‘Asym-x’.

Tables (6)

Tables Icon

Table 1 Compositions of photopolymers with various amounts of YE

Tables Icon

Table 2. Diffraction efficiency, film thickness of photopolymer, and refractive index modulation, energetic sensitivity calculated from Eq. (1) and Eq. (2)

Tables Icon

Table 3 Compositions of photopolymers with various TEA contents

Tables Icon

Table 4 Diffraction efficiency, film thickness of photopolymer, glass transition temperature, and refractive index modulation, energetic sensitivity that are calculated from Eq. (1) and Eq. (2)

Tables Icon

Table 5 Diffraction efficiency and energetic sensitivity with important parameters, spatial frequency and film thickness of recent works by others reported in the literature

Tables Icon

Table 6 Results of angular response at asymmetric geometry and calculated volume shrinkage factor.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( cm 2 / J ) = Δ n E
η = sin 2 Δ nd λ cos θ
σ = 1 tan ø tan ( ø + Δ ø )

Metrics