Abstract

Photopolymers are interesting materials to obtain high-quality performance for the volume holographic data storage with a low noise and high diffraction efficiency. In this paper, the recording of holographic diffraction gratings with a spatial frequency of approximately 1940lines/mm in photopolymerizable epoxy resin materials is experimentally demonstrated. Diffraction efficiency near 92% and an energetic sensitivity of 11.7×10-3cm2/J are achieved by designing the proper structure of matrix and also optimizing photopolymer compositions. The effect of photopolymer compositions on the fundamental optical properties is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lawrence, F. T. O`Neill and J. T. Sheridan, "Photopolymer holographic recording material," Optik 112, 449-463 (2001).
    [CrossRef]
  2. L. Hesselink, S. S. Orlov and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
    [CrossRef]
  3. L. Dhar, "High-performance polymer recording materials for holographic data storage," MRS Bull. 31, 324-328 (2006).
    [CrossRef]
  4. R. M. Shelby, D. A. Waldman and R. T. Ingwall, "Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media," Opt. Lett. 25, 713-715 (2000).
    [CrossRef]
  5. P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492 (2001).
    [CrossRef]
  6. M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt. Lett. 24, 658-660 (1999).
    [CrossRef]
  7. L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena and A. Fimia, "Acrylamide-N,N’-methylenebisacrylamide silica glass holographic recording material," Opt. Express 12, 1780-1787 (2004).
    [CrossRef] [PubMed]
  8. G. Ramos, A. A. Herrero, T. Belenguer, F. del Monte, and D. Levy, "Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording," Appl. Opt. 43, 4018-4024 (2004).
    [CrossRef] [PubMed]
  9. D. A. Waldman, H. -Y. S. Li and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).
  10. D. A. Waldman, C. I. Butler and D. H. Raguin, "CROP holographic storage media for optical data storage at greater than 100bits/sq. micron," Proc. SPIE 5216, 10-25 (2003).
    [CrossRef]
  11. N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
    [CrossRef]
  12. Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
    [CrossRef]
  13. W. S. Kim, Y. -C. Jeong and J. -K. Park, "Organic-inorganic hybrid photopolymer with reduced volume shrinkage," Appl. Phys. Lett. 87, 012106 (2005).
  14. C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
    [CrossRef]
  15. F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
    [CrossRef]
  16. T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy resin-photopolymer composites for volume holography," Chem. Mater. 12, 1431-1438 (2000).
    [CrossRef]
  17. T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy-photopolymer composites: thick recording media for holographic data storage," Proc. SPIE 4296, 259-266 (2001).
    [CrossRef]
  18. B. P. Iguanero, A. O. Perez and I. F. Tapia, "Holographic material film composed by Norland Noa 65 adhesive," Opt. Mater. 29, 225-232 (2002).
    [CrossRef]
  19. W. S. Kim, Y. -C. Jeong and J. -K. Park, "Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer," Opt. Express 14, 8967-8973 (2006).
    [CrossRef] [PubMed]
  20. M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
    [CrossRef]
  21. H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
    [CrossRef]
  22. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Sys. Technol. J. 48, 2909-2947 (1969).
  23. W. S. Kim, Y. -C. Jeong and J. -K. Park, "Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix," Opt. Mater. accepted (2006).
  24. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
    [CrossRef]

2006 (4)

L. Dhar, "High-performance polymer recording materials for holographic data storage," MRS Bull. 31, 324-328 (2006).
[CrossRef]

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer," Opt. Express 14, 8967-8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix," Opt. Mater. accepted (2006).

2005 (2)

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Organic-inorganic hybrid photopolymer with reduced volume shrinkage," Appl. Phys. Lett. 87, 012106 (2005).

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

2004 (3)

2003 (3)

D. A. Waldman, C. I. Butler and D. H. Raguin, "CROP holographic storage media for optical data storage at greater than 100bits/sq. micron," Proc. SPIE 5216, 10-25 (2003).
[CrossRef]

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

2002 (3)

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

B. P. Iguanero, A. O. Perez and I. F. Tapia, "Holographic material film composed by Norland Noa 65 adhesive," Opt. Mater. 29, 225-232 (2002).
[CrossRef]

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

2001 (3)

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy-photopolymer composites: thick recording media for holographic data storage," Proc. SPIE 4296, 259-266 (2001).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492 (2001).
[CrossRef]

J. R. Lawrence, F. T. O`Neill and J. T. Sheridan, "Photopolymer holographic recording material," Optik 112, 449-463 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

1997 (1)

D. A. Waldman, H. -Y. S. Li and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

1969 (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Sys. Technol. J. 48, 2909-2947 (1969).

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Bashaw, M. C.

L. Hesselink, S. S. Orlov and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Bastiaansen, C. W. M.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Belendez, A.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Belenguer, T.

Blaya, S.

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Boyd, J. E.

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy-photopolymer composites: thick recording media for holographic data storage," Proc. SPIE 4296, 259-266 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy resin-photopolymer composites for volume holography," Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Broer, D. J.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Butler, C. I.

D. A. Waldman, C. I. Butler and D. H. Raguin, "CROP holographic storage media for optical data storage at greater than 100bits/sq. micron," Proc. SPIE 5216, 10-25 (2003).
[CrossRef]

Calvo, M. L.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492 (2001).
[CrossRef]

Carretero, L.

Cheben, P.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492 (2001).
[CrossRef]

Chen, Z.

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Colvin, V. L.

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy-photopolymer composites: thick recording media for holographic data storage," Proc. SPIE 4296, 259-266 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy resin-photopolymer composites for volume holography," Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

del Monte, F.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

G. Ramos, A. A. Herrero, T. Belenguer, F. del Monte, and D. Levy, "Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording," Appl. Opt. 43, 4018-4024 (2004).
[CrossRef] [PubMed]

Dhar, L.

L. Dhar, "High-performance polymer recording materials for holographic data storage," MRS Bull. 31, 324-328 (2006).
[CrossRef]

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt. Lett. 24, 658-660 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Escuti, M. J.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Fimia, A.

Gallego, S.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Gan, F.

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Garcia, C.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Heesch, C. V.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Herrero, A. A.

Hesselink, L.

L. Hesselink, S. S. Orlov and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Horner, M. G.

D. A. Waldman, H. -Y. S. Li and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Hou, L.

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Huang, M.

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Iguanero, B. P.

B. P. Iguanero, A. O. Perez and I. F. Tapia, "Holographic material film composed by Norland Noa 65 adhesive," Opt. Mater. 29, 225-232 (2002).
[CrossRef]

Ingwall, R. T.

Jeong, Y. -C.

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer," Opt. Express 14, 8967-8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix," Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Organic-inorganic hybrid photopolymer with reduced volume shrinkage," Appl. Phys. Lett. 87, 012106 (2005).

Kim, W. S.

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer," Opt. Express 14, 8967-8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix," Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Organic-inorganic hybrid photopolymer with reduced volume shrinkage," Appl. Phys. Lett. 87, 012106 (2005).

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Sys. Technol. J. 48, 2909-2947 (1969).

Kojima, T.

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O`Neill and J. T. Sheridan, "Photopolymer holographic recording material," Optik 112, 449-463 (2001).
[CrossRef]

Levy, D.

Li, H. -Y. S.

D. A. Waldman, H. -Y. S. Li and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Loos, J.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Martinez, O.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

Murciano, A.

Neipp, C.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

Nussbaumer, R.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

O`Neill, F. T.

J. R. Lawrence, F. T. O`Neill and J. T. Sheridan, "Photopolymer holographic recording material," Optik 112, 449-463 (2001).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Ortuno, M.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Park, J. -K.

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer," Opt. Express 14, 8967-8973 (2006).
[CrossRef] [PubMed]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix," Opt. Mater. accepted (2006).

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Organic-inorganic hybrid photopolymer with reduced volume shrinkage," Appl. Phys. Lett. 87, 012106 (2005).

Pascual, I.

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Patel, S. S.

Perez, A. O.

B. P. Iguanero, A. O. Perez and I. F. Tapia, "Holographic material film composed by Norland Noa 65 adhesive," Opt. Mater. 29, 225-232 (2002).
[CrossRef]

Raguin, D. H.

D. A. Waldman, C. I. Butler and D. H. Raguin, "CROP holographic storage media for optical data storage at greater than 100bits/sq. micron," Proc. SPIE 5216, 10-25 (2003).
[CrossRef]

Ramos, G.

Rodrigo, J. A.

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

Sanchez, C.

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Schilling, M. L.

Schnoes, M. G.

M. G. Schnoes, L. Dhar, M. L. Schilling, S. S. Patel and P. Wiltzius, "Photopolymer-filled nanoporous glass as a dimensionally stable holographic recording medium," Opt. Lett. 24, 658-660 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Shelby, R. M.

Sheridan, J. T.

J. R. Lawrence, F. T. O`Neill and J. T. Sheridan, "Photopolymer holographic recording material," Optik 112, 449-463 (2001).
[CrossRef]

Suzuki, N.

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Tapia, I. F.

B. P. Iguanero, A. O. Perez and I. F. Tapia, "Holographic material film composed by Norland Noa 65 adhesive," Opt. Mater. 29, 225-232 (2002).
[CrossRef]

Tomita, Y.

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Trentler, T. J.

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy-photopolymer composites: thick recording media for holographic data storage," Proc. SPIE 4296, 259-266 (2001).
[CrossRef]

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy resin-photopolymer composites for volume holography," Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Ulibarrena, M.

Waldman, D. A.

D. A. Waldman, C. I. Butler and D. H. Raguin, "CROP holographic storage media for optical data storage at greater than 100bits/sq. micron," Proc. SPIE 5216, 10-25 (2003).
[CrossRef]

R. M. Shelby, D. A. Waldman and R. T. Ingwall, "Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media," Opt. Lett. 25, 713-715 (2000).
[CrossRef]

D. A. Waldman, H. -Y. S. Li and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Wiltzius, P.

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

Yao, H.

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Adv. Funct. Mater. (1)

C. Sanchez, M. J. Escuti, C. V. Heesch, C. W. M. Bastiaansen, D. J. Broer, J. Loos and R. Nussbaumer, "TiO2 nanoparticle-photopolymer composites for volume holographic recording," Adv. Funct. Mater. 15, 1623-1629 (2005).
[CrossRef]

Adv. Mater. (1)

F. del Monte, O. Martinez, J. A. Rodrigo, M. L. Calvo, and P. Cheben, "A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species," Adv. Mater. 18, 2014-2017 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Ortuno, S. Gallego, C. Garcia, C. Neipp, A. Belendez and I. Pascual, "Optimization of a 1mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[CrossRef]

P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Appl. Phys. Lett. 78, 1490-1492 (2001).
[CrossRef]

N. Suzuki, Y. Tomita and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Organic-inorganic hybrid photopolymer with reduced volume shrinkage," Appl. Phys. Lett. 87, 012106 (2005).

Bell Sys. Technol. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Sys. Technol. J. 48, 2909-2947 (1969).

Chem. Mater. (1)

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy resin-photopolymer composites for volume holography," Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

J. Imaging Sci. Technol. (1)

D. A. Waldman, H. -Y. S. Li and M. G. Horner, "Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material," J. Imaging Sci. Technol. 41, 497-514 (1997).

Mater. Lett. (1)

H. Yao, M. Huang, Z. Chen, L. Hou and F. Gan, "Optimization of two-monomer-based photopolymer used for holographic recording," Mater. Lett. 56, 3-8 (2002).
[CrossRef]

MRS Bull. (1)

L. Dhar, "High-performance polymer recording materials for holographic data storage," MRS Bull. 31, 324-328 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (2)

B. P. Iguanero, A. O. Perez and I. F. Tapia, "Holographic material film composed by Norland Noa 65 adhesive," Opt. Mater. 29, 225-232 (2002).
[CrossRef]

W. S. Kim, Y. -C. Jeong and J. -K. Park, "Diffraction efficiency behavior of photopolymer based on P(MMA-co-MAA) copolymer matrix," Opt. Mater. accepted (2006).

Optik (1)

J. R. Lawrence, F. T. O`Neill and J. T. Sheridan, "Photopolymer holographic recording material," Optik 112, 449-463 (2001).
[CrossRef]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Proc. SPIE (2)

D. A. Waldman, C. I. Butler and D. H. Raguin, "CROP holographic storage media for optical data storage at greater than 100bits/sq. micron," Proc. SPIE 5216, 10-25 (2003).
[CrossRef]

T. J. Trentler, J. E. Boyd and V. L. Colvin, "Epoxy-photopolymer composites: thick recording media for holographic data storage," Proc. SPIE 4296, 259-266 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Molecular structures of component materials for photopolymer (a) PPGDGE (b) PEI (c) AA (d) TEA (e) YE

Fig. 2.
Fig. 2.

The optical properties of photopolymers with different content of sensitizer (a) Diffraction efficiency behavior of photopolymers with various amount of YE (b) Transmission efficiency behavior of photopolymers with various amount of YE

Fig. 3.
Fig. 3.

The diffraction efficiency behavior of photopolymers with various TEA contents

Fig. 4.
Fig. 4.

FT-IR analysis in ATR mode of photopolymer with variation of TEA, which shows the interaction between AA and TEA

Fig. 5. (a).
Fig. 5. (a).

Schematic figure of asymmetric recording, where the long dash line is a K-vector of incident beams and short dash line is perpendicular to the film surface. (b). Angular response of photopolymer with film thickness, 81μm The asymmetric angle is represented as x in the ‘Asym-x’.

Tables (6)

Tables Icon

Table 1 Compositions of photopolymers with various amounts of YE

Tables Icon

Table 2. Diffraction efficiency, film thickness of photopolymer, and refractive index modulation, energetic sensitivity calculated from Eq. (1) and Eq. (2)

Tables Icon

Table 3 Compositions of photopolymers with various TEA contents

Tables Icon

Table 4 Diffraction efficiency, film thickness of photopolymer, glass transition temperature, and refractive index modulation, energetic sensitivity that are calculated from Eq. (1) and Eq. (2)

Tables Icon

Table 5 Diffraction efficiency and energetic sensitivity with important parameters, spatial frequency and film thickness of recent works by others reported in the literature

Tables Icon

Table 6 Results of angular response at asymmetric geometry and calculated volume shrinkage factor.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( cm 2 / J ) = Δ n E
η = sin 2 Δ nd λ cos θ
σ = 1 tan ø tan ( ø + Δ ø )

Metrics