Abstract

We report a compact and stable all-microstructured-optical-fiber interferometer built with two fusion splices separated a few centimeters from each other. The air-holes of the fiber are intentionally collapsed in the vicinity of the splices. This broadens the propagating optical mode, allowing coupling of two modes in the section between the splices. A truly sinusoidal interference pattern was observed from 800 nm to 1600 nm with fringe visibility reaching 80%. The fringe spacing was inversely proportional to the distance between the splices. The potential of the device for sensing applications is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  2. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
    [CrossRef]
  4. P. J. A. Sazio et al. "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  5. W. N. MacPherson et al. "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
    [CrossRef]
  6. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, "Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings," Opt. Lett. 29, 346-348 (2004).
    [CrossRef] [PubMed]
  7. D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, "Intermodal interference in a photonic crystal fibre," Opt. Express 12, 3465-3470 (2004).
    [CrossRef] [PubMed]
  8. J. Ju, W. Jin, and M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
    [CrossRef]
  9. R. L. Willing, W. P. Kelleher, and S. P. Smith, "Photonic crystal interferometric fiber optical gyroscope," U.S. Patent Application Publication No: US-2004-0263856, Dec. 30 (2004).
  10. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
    [CrossRef]
  11. L. Yuan, J. Yang, Z. Liu, and J. Sun, "In-fiber integrated Michelson interferometer," Opt. Lett. 31, 2692-2694 (2006).
    [CrossRef] [PubMed]
  12. A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, "Observation of mode coupling in bitapered air-core photonic bandgap fibers," Opt. Commun.to be published.
  13. J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
    [CrossRef]
  14. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003).
    [PubMed]
  15. A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
    [CrossRef]
  16. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
    [CrossRef]
  17. M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
    [CrossRef]
  18. See for example http://www.crystal-fibre.com/products/termination.shtm
  19. V. P. Minkovich, A.V. Kiryanov, A.B. Sotsky, and L.I. Sotskaya, "Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties," J. Opt. Soc. Am. B 21, 1161-1169 (2004).
    [CrossRef]

2006 (5)

P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

P. J. A. Sazio et al. "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

L. Yuan, J. Yang, Z. Liu, and J. Sun, "In-fiber integrated Michelson interferometer," Opt. Lett. 31, 2692-2694 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

2004 (4)

2003 (2)

J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003).
[PubMed]

2001 (2)

W. N. MacPherson et al. "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Ashton, B.

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Bise, R. T.

A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

Bourliaguet, B.

Canning, J.

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, "Intermodal interference in a photonic crystal fibre," Opt. Express 12, 3465-3470 (2004).
[CrossRef] [PubMed]

Chong, J. H.

J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Croteau, A.

Demokan, M. S.

J. Ju, W. Jin, and M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
[CrossRef]

Digonnet, M. J. F.

A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, "Observation of mode coupling in bitapered air-core photonic bandgap fibers," Opt. Commun.to be published.

Eggleton, B. J.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Émond, F.

Gaeta, A. L.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Hale, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Issa, N.

Jang, H. S.

Jin, W.

J. Ju, W. Jin, and M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
[CrossRef]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
[CrossRef]

Kácik, D.

Kerbage, C.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Kim, J. C.

Kino, G. S.

A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, "Observation of mode coupling in bitapered air-core photonic bandgap fibers," Opt. Commun.to be published.

Kiryanov, A.V.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Lee, B. H.

Lee, K. S.

Lim, J. H.

Liu, Z.

Lyytikainen, K.

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

Lyytikäinen, K.

MacPherson, W. N.

W. N. MacPherson et al. "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Martelli, C.

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

Martincek, I.

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

V. P. Minkovich, A.V. Kiryanov, A.B. Sotsky, and L.I. Sotskaya, "Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties," J. Opt. Soc. Am. B 21, 1161-1169 (2004).
[CrossRef]

Monzón-Hernández, D.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Ozcan, A.

A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, "Observation of mode coupling in bitapered air-core photonic bandgap fibers," Opt. Commun.to be published.

Paré, C.

Proulx, A.

Rao, M. K.

J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Russell, J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Russell, P. St. J.

Sazio, P. J. A.

P. J. A. Sazio et al. "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Shum, Y. P.

J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Sotskaya, L.I.

Sotsky, A.B.

St, P.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Stevenson, M.

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

Sun, J.

Tewary, A.

A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, "Observation of mode coupling in bitapered air-core photonic bandgap fibers," Opt. Commun.to be published.

Turek, I.

Vallée, R.

Villatoro, J.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

Windeler, R. S.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Yablon, A. D.

A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

Yang, J.

Yuan, L.

Zhu, Y.

J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001).
[CrossRef]

Electon. Lett. (1)

M. Stevenson, C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen, "Photonic crystal fibre optical attenuators," Electon. Lett. 41, 1167-1169 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. H. Chong, M. K. Rao, Y. Zhu, and Y. P. Shum, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photon. Technol. Lett. 15, 942-944 (2003).
[CrossRef]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, "Compact modal interferometer built with tapered microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

J. Ju, W. Jin, and M. S. Demokan, "Two-mode operation in highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 2472-2474 (2004).
[CrossRef]

A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. StJ. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2006).
[CrossRef]

Opt. Commun. (2)

W. N. MacPherson et al. "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

A. Ozcan, A. Tewary, M. J. F. Digonnet, and G. S. Kino, "Observation of mode coupling in bitapered air-core photonic bandgap fibers," Opt. Commun.to be published.

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Science (1)

P. J. A. Sazio et al. "Microstructured optical fibers as high-pressure microfluidic reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Other (2)

R. L. Willing, W. P. Kelleher, and S. P. Smith, "Photonic crystal interferometric fiber optical gyroscope," U.S. Patent Application Publication No: US-2004-0263856, Dec. 30 (2004).

See for example http://www.crystal-fibre.com/products/termination.shtm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Atomic force microscope image of the MOF used in the experiments (top-left image) and a micrograph of a section of the MOF splice (top-right image). The bottom drawing is a schematic representation of the all-MOF interferometer. The splices are illustrated as white areas, the horizontal lines represent the holey region of the MOF, L is the separation between the splices, and z represents the direction of propagation.

Fig. 2.
Fig. 2.

(left) Experimental normalized transmission spectrum around 850 nm of a MOF interferometer with L = 6.35 cm. (right) Average period of the interferometers versus the length L of MOF between the splices. The dots are experimental points and the continuous line is an exponential fitting to the points.

Fig. 3.
Fig. 3.

Normalized transmission versus wavelength of an interferometer with L = 7.5 cm. The light source was a tunable laser and the output power was measured with an InGaAs photodetector.

Fig. 4.
Fig. 4.

(left) Interference spectra of an interferometer with L = 8.6 cm subjected to 0 (solid line) and 750 με (dotted line). (right) Shift of the interference spectrum shown in the left-hand side as a function of the applied (squares) or removed (crosses) strain. The continuous line is a linear fitting to the experimental data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MFD = 2 ω 0 1 + ( n 1 π ω 0 2 ) 2 .
Λ = 2 πλ ( β 1 β 2 ) L .

Metrics