Abstract

We investigate femtosecond optical parametric oscillators (OPO’s) based on short pieces of microstructure fiber that generate sub-picosecond pulses with record average output power (50 mW) and >200 nm of wavelength tunability (yellow to near-IR). Signal and conjugate (idler) fields spanning an octave are also demonstrated. These systems can operate with a wide range of microstructure fibers, pump laser wavelengths and pulse durations, and our analysis shows that in terms of wavelength tunability and output power using short (less than a few cm’s) optical fibers leads to performance that is superior to that with longer lengths.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
    [CrossRef] [PubMed]
  2. J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (San Diego: Academic Press 1996).
  3. M. Dantus and V. Lozovoy, "Experimental coherent laser control of physicochemical processes," Chem. Rev. 104, 1813-1859 (2004).
    [CrossRef] [PubMed]
  4. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dualwavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
    [CrossRef] [PubMed]
  5. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001).
    [CrossRef]
  6. J. Fan, A. Dogariu, L. J. Wang, "Parametric amplification in a microstructure fiber," Appl. Phys. B 81, 801-805 (2005).
    [CrossRef]
  7. K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
    [CrossRef]
  8. A. Chen, G. Wong, S. Murdoch, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
    [CrossRef] [PubMed]
  9. T. Andersen, K. Hilligsøe, C. Nielsen, J. Thøgersen, K. Hansen, S. Keiding, and J. Larsen, "Continuouswave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths," Opt. Express 12, 4113-4122 (2004).
    [CrossRef] [PubMed]
  10. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman and S. Radic, "375 THz parametric translation of modulated signal from 1550 nm to visible band," Postdeadline paper (PDP16) presented at the 2006 conference on Optical Fiber Communication (OFC '06), Anaheim, CA (2006).
  11. W. Margulis, and U. Österberg, "Four-photon fiber laser," Opt. Lett. 12, 519-521 (1987).
    [CrossRef] [PubMed]
  12. K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
    [CrossRef] [PubMed]
  13. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett. 27, 1439-1441 (2002).
    [CrossRef]
  14. D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999).
    [CrossRef]
  15. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on fourwave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002).
    [CrossRef]
  16. C. de Matos, J. Taylor, and K. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
    [CrossRef] [PubMed]
  17. Y. Deng, Q. Lin, F. Lu, G. Agrawal, and W. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005).
    [CrossRef] [PubMed]
  18. R. Stolen and J. E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers," IEEE J. Quantum Electron. QE-18, 1062-1072 (1982).
    [CrossRef]
  19. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (San Diego: Academic Press, 2001).
  21. B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," (New York, Wiley 1991).
  22. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  23. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]

2006 (1)

2005 (3)

2004 (3)

2003 (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

2002 (4)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett. 27, 1439-1441 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on fourwave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002).
[CrossRef]

2001 (1)

1999 (2)

D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999).
[CrossRef]

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

1997 (1)

1989 (1)

1987 (1)

1982 (1)

R. Stolen and J. E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers," IEEE J. Quantum Electron. QE-18, 1062-1072 (1982).
[CrossRef]

Abedin, K. S.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

Agrawal, G.

Andersen, T.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Bjorkholm, J. E.

R. Stolen and J. E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers," IEEE J. Quantum Electron. QE-18, 1062-1072 (1982).
[CrossRef]

Carrasco, S.

Chen, A.

Coker, A.

Dantus, M.

M. Dantus and V. Lozovoy, "Experimental coherent laser control of physicochemical processes," Chem. Rev. 104, 1813-1859 (2004).
[CrossRef] [PubMed]

de Matos, C.

Deng, Y.

Dogariu, A.

J. Fan, A. Dogariu, L. J. Wang, "Parametric amplification in a microstructure fiber," Appl. Phys. B 81, 801-805 (2005).
[CrossRef]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

Fan, J.

J. Fan, A. Dogariu, L. J. Wang, "Parametric amplification in a microstructure fiber," Appl. Phys. B 81, 801-805 (2005).
[CrossRef]

Fiorentino, M.

Ganikhanov, F.

Gopinath, J. T.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

Hansen, K.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Harvey, J.

Haus, H. A.

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Hilligsøe, K.

Ippen, E. P.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

Katz, M.

Kazovsky, L. G.

Keiding, S.

Kerbage, C. E.

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

Knight, J.

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Knox, W.

Kopf, D.

Kumar, P.

Larsen, J.

Leonhardt, R.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Lin, Q.

Lozovoy, V.

M. Dantus and V. Lozovoy, "Experimental coherent laser control of physicochemical processes," Chem. Rev. 104, 1813-1859 (2004).
[CrossRef] [PubMed]

Lu, F.

Margulis, W.

Marhic, M. E.

Murdoch, S.

Nakazawa, M.

Nielsen, C.

Ominetto, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Österberg, U.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Seitz, W.

Serkland, D. K.

Sharping, J. E.

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Stolen, R.

R. Stolen and J. E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers," IEEE J. Quantum Electron. QE-18, 1062-1072 (1982).
[CrossRef]

Sunney Xie, X.

Suzuki, K.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Taylor, J.

Thøgersen, J.

Tsai, T. E.

Wadsworth, W.

Wang, L. J.

J. Fan, A. Dogariu, L. J. Wang, "Parametric amplification in a microstructure fiber," Appl. Phys. B 81, 801-805 (2005).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Windeler, R. S.

Wong, G.

Wong, K. K. Y.

Appl. Phys. B (1)

J. Fan, A. Dogariu, L. J. Wang, "Parametric amplification in a microstructure fiber," Appl. Phys. B 81, 801-805 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

K. S. Abedin, J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett. 81, 1384-1386 (2002).
[CrossRef]

Chem. Rev. (1)

M. Dantus and V. Lozovoy, "Experimental coherent laser control of physicochemical processes," Chem. Rev. 104, 1813-1859 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. Stolen and J. E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers," IEEE J. Quantum Electron. QE-18, 1062-1072 (1982).
[CrossRef]

IEEE J. Sel. Tops. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Tops. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

Nature (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. Ominetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (11)

A. Chen, G. Wong, S. Murdoch, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005).
[CrossRef] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. Agrawal, and W. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dualwavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999).
[CrossRef]

W. Margulis, and U. Österberg, "Four-photon fiber laser," Opt. Lett. 12, 519-521 (1987).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett. 27, 1439-1441 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on fourwave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002).
[CrossRef]

C. de Matos, J. Taylor, and K. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004).
[CrossRef] [PubMed]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continuous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Other (4)

J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (San Diego: Academic Press 1996).

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman and S. Radic, "375 THz parametric translation of modulated signal from 1550 nm to visible band," Postdeadline paper (PDP16) presented at the 2006 conference on Optical Fiber Communication (OFC '06), Anaheim, CA (2006).

G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (San Diego: Academic Press, 2001).

B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," (New York, Wiley 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Plots of Eq. (1) showing the device performance as the fiber length is reduced. (a) The gain is plotted versus wavelength for fiber lengths ranging from 3 mm to 2.1 m. Calculation parameters are: λ 0 = 730 nm, λ p = 737 nm, γ= 94 (W km)-1, β 2 = -6.8 × 10-28 s2/m, β 4 = -4.2 × 10-56 s4/m. (b) The expected output pulse energy (squares, left axis) and gain bandwidth (solid line, right axis) are plotted versus fiber length.

Fig. 2.
Fig. 2.

Left: Schematic of the experimental apparatus. Right: Typical output spectrum where the FWM orders are labeled, and the system is configured to oscillate in the +1 order. See Table 1 for NL-1.8-730 test parameters.

Fig. 3.
Fig. 3.

(a) A composite of optical spectra (with the central pump peak removed) of the output of the FOPO. (b) The measured output powers versus wavelength for the -1, -2, and -3 output modes. See Table 1 for NL-1.8-730 test parameters.

Fig. 4.
Fig. 4.

(a) A plot of output average power as a function of pump power where the oscillation threshold is 390 mW, and the slope efficiency is 58 %. Inset in (a) is an intensity autocorrelation (AC) of the output where τ ac = 810 fs. (b) The spectral tuning capability of the system for which oscillation is in the -1 (short-wavelength) mode. See Table 1 for NL-2.3-790 test parameters.

Fig. 5.
Fig. 5.

A composite of optical spectra showing the broad phase matching capability afforded by using a very short fiber. See Table 1 for Low Air-Fill test parameters.

Tables (1)

Tables Icon

Table 1. Comparison of FOPO devices

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G S = P S ( L ) P S ( 0 ) = 1 + [ γ P P g sinh ( gL ) ] 2 ,

Metrics