Abstract

Novel features in stretched-pulse and similariton mode-locked regimes of Yb-doped fiber laser with photonic bandgap fiber used for dispersion compensation are found by means of numerical simulations. We show that the mode-locked pulse may become shorter with increasing third-order dispersion. Analytical estimations explain observed behavior through resonant interaction of the main pulse with dispersive waves involving both resonant sidebands and zero-group-velocity dispersion waves. Switching between the stretched-pulse and the similariton regimes is also studied.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006).
    [CrossRef]
  2. H. Lim and F. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004).
    [CrossRef] [PubMed]
  3. A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]
  4. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 µm using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006).
    [CrossRef] [PubMed]
  5. R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, 19-20 (2006).
    [CrossRef]
  6. H. A. Haus, J. D. Moores, and L. E. Nelson, "Effect of third-order dispersion on passive mode locking," Opt. Lett. 18, 51-53 (1993).
    [CrossRef] [PubMed]
  7. M. L. Dennis and I. N. Duling, III, "Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
    [CrossRef]
  8. M. L. Dennis and I. N. Duling, III, "Third-order dispersion in femtosecond fiber lasers," Opt.Lett. 19, 1750-1752 (1994).
    [CrossRef] [PubMed]
  9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  10. F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
    [CrossRef]
  11. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  12. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005).
    [CrossRef] [PubMed]
  13. V. P. Kalosha, L. Chen, and X. Bao, "Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser," Opt. Express 14, 4935-4945 (2006).
    [CrossRef] [PubMed]
  14. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004).
    [CrossRef] [PubMed]
  15. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
    [CrossRef]
  16. A. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instr. 71, 1929-1960 (2000).
    [CrossRef]
  17. J. R. Buckley, S. W. Clark, and F. W. Wise, "Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation," Opt. Lett. 31, 1340-1342 (2006).
    [CrossRef] [PubMed]
  18. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Opt. Express 11, 3550-3554 (2003)
    [CrossRef] [PubMed]
  19. T. Brabec and S. M. J. Kelly, "Third-order dispersion as a limiting factor to mode locking in femtosecond solitary lasers," Opt. Lett. 18, 2002-2004 (1993).
    [CrossRef] [PubMed]
  20. J. Herrmann, V. P. Kalosha, and M. Muller, "Higher-order phase dispersion in femtosecond Kerr-lens mode-locked solid-state lasers: sideband generation and pulse splitting," Opt. Lett. 22, 236-238 (1997).
    [CrossRef] [PubMed]

2006 (6)

2005 (2)

2004 (3)

2003 (1)

2000 (1)

A. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

1997 (1)

1994 (2)

M. L. Dennis and I. N. Duling, III, "Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling, III, "Third-order dispersion in femtosecond fiber lasers," Opt.Lett. 19, 1750-1752 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (1)

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

Bao, X.

Brabec, T.

Buckley, J.

Buckley, J. R.

J. R. Buckley, S. W. Clark, and F. W. Wise, "Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation," Opt. Lett. 31, 1340-1342 (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Campbell, S.

Chen, L.

Cho, G.

Chong, A.

Clark, S. W.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Dennis, M. L.

M. L. Dennis and I. N. Duling, III, "Third-order dispersion in femtosecond fiber lasers," Opt.Lett. 19, 1750-1752 (1994).
[CrossRef] [PubMed]

M. L. Dennis and I. N. Duling, III, "Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

Duling, I. N.

M. L. Dennis and I. N. Duling, III, "Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling, III, "Third-order dispersion in femtosecond fiber lasers," Opt.Lett. 19, 1750-1752 (1994).
[CrossRef] [PubMed]

Fermann, M.

Hartl, I.

Haus, H. A.

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

H. A. Haus, J. D. Moores, and L. E. Nelson, "Effect of third-order dispersion on passive mode locking," Opt. Lett. 18, 51-53 (1993).
[CrossRef] [PubMed]

Herda, R.

R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, 19-20 (2006).
[CrossRef]

Herrmann, J.

Ilday, F.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Imeshev, G.

Ippen, E. P.

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

Isomäki, A.

R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, 19-20 (2006).
[CrossRef]

A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
[CrossRef] [PubMed]

Jespersen, K. G.

Kalosha, V. P.

Keiding, S. R.

Kelly, S. M. J.

T. Brabec and S. M. J. Kelly, "Third-order dispersion as a limiting factor to mode locking in femtosecond solitary lasers," Opt. Lett. 18, 2002-2004 (1993).
[CrossRef] [PubMed]

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

Knight, J.

Kuznetsova, L.

Lim, H.

Limpert, J.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006).
[CrossRef]

Liu, Z.

Luan, F.

Mangan, B.

Moores, J. D.

Muller, M.

Nelson, L. E.

H. A. Haus, J. D. Moores, and L. E. Nelson, "Effect of third-order dispersion on passive mode locking," Opt. Lett. 18, 51-53 (1993).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

Nielsen, C. K.

Okhotnikov, O. G.

R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, 19-20 (2006).
[CrossRef]

A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
[CrossRef] [PubMed]

Reid, D.

Roberts, P.

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006).
[CrossRef]

Russell, P.

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006).
[CrossRef]

Shah, L.

Tamura, K.

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006).
[CrossRef]

Weiner, A.

A. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

Williams, D.

Wise, F.

Wise, F. W.

J. R. Buckley, S. W. Clark, and F. W. Wise, "Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation," Opt. Lett. 31, 1340-1342 (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Xiao, D.

Zhou, S.

Electron. Lett. (2)

R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, 19-20 (2006).
[CrossRef]

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, III, "Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006).
[CrossRef]

Opt. Express (8)

H. Lim and F. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004).
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
[CrossRef] [PubMed]

C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 µm using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006).
[CrossRef] [PubMed]

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
[CrossRef] [PubMed]

S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005).
[CrossRef] [PubMed]

V. P. Kalosha, L. Chen, and X. Bao, "Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser," Opt. Express 14, 4935-4945 (2006).
[CrossRef] [PubMed]

F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004).
[CrossRef] [PubMed]

F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Opt. Express 11, 3550-3554 (2003)
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt.Lett. (2)

M. L. Dennis and I. N. Duling, III, "Third-order dispersion in femtosecond fiber lasers," Opt.Lett. 19, 1750-1752 (1994).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Rev. Sci. Instr. (1)

A. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instr. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Ring configuration of the mode-locked fiber laser

Fig. 2.
Fig. 2.

Pulse characteristics for mode-locking regimes with and without TOD in dispersion compensating hollow-core PBF at λ=1.03μm: (a) profiles after amplification in Yb-doped fiber where solid line corresponds to TOD=500 fs3/mm in PBF and dashed line for the case without TOD in PBF, (b) corresponding transform-limited pulses, (c) the phase at different locations of the cavity for the parameters corresponding to solid line pulse in (a), (d) the spectra for the pulses in (a), (e) sidebands positions versus frequency offset for spectra in (d), (f) cavity GVD versus frequency. Solid and dashed lines intersecting at point R correspond to two curves in (d) and (e), while dashed-doted line crossing y-axis at point P corresponds to positive nominal cavity dispersion. Arrow illustrates rotation of the line around point R with increasing TOD.

Fig. 3.
Fig. 3.

Duration of the transform limited pulse versus TOD in the dispersion compensating hollow-core PBF (a) and solid-core PBF (b).

Fig. 4.
Fig. 4.

Pulse shapes (a) and corresponding spectra (b) for the case of net positive cavity GVD=0.005 ps2 for the hollow-core PBF. Thin solid curves marked with dots correspond to TOD taken into account only in SMF and Yb-doped fibers, dashed curve (power) and dot-dashed curve (phase) for the PBF TOD=500 fs3/mm, thick solid lines for the PBF TOD=1200 fs3/mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z = α 2 A i β 2 2 2 A t 2 + β 3 6 3 A t 3 + i γ A 2 A + g 0 1 + E pulse E sat A ,
N = 1 4 π L β 2 ( Δ ω N 2 + Δ Ω 2 ) 1 12 π L β 3 Δ ω N 3 .

Metrics