Abstract

A nonuniform large mode area fiber having an larger core at most locations to reduce power intensity and having a relatively smaller core at certain locations to reduce bending sensitivity is proposed for suppression of stimulated Brillouin scattering (SBS) in a high power fiber amplifier. A comprehensive model taking into account fiber nonuniformity, profile and temperature gradient shows that the fiber can achieve kilowatt output at a temperature gradient of >250 °C. Compared with a conventional large mode area fiber, a total of 7 dB SBS suppression can be achieved using this unique fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. Nilsson, J. K. Sahu,  et al, "Single-frequency, polarized ytterbium-doped fiber MOPA source with 264 W output power," CLEO, San Francisco, May. 16-21, (2004), postdeadline paper CPDD1.
  2. O. Shkurikhin, N. S. Platonov, D. V. Gapontsev, R. Yagodkin, V. P. Gapontsev "300W single-frequency, single-mode, all-fiber format ytterbium amplifier operating at 1060-1070-nm wavelength range," 6102-61, Photonics West, San Jose, 21~26 January (2006).
  3. K. Shiraishi, Y. Aizawa,; S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. of Lightwave Technol. 8, 1151-1161 (1990).
    [CrossRef]
  4. K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
    [CrossRef]
  5. C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096, (2001).
    [CrossRef]
  6. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," App. Opt. 11, 2489-2494 (1972).
    [CrossRef]
  7. V. I. Kovalev and R. G. Harrison, "Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers," Opt. Lett. 31, 161-163 (2006).
    [CrossRef] [PubMed]
  8. V. I. Kovalev, and R. G. Harrison, "Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber," Opt. Lett. 27, 2022-2024 (2002).
    [CrossRef]
  9. Y. Imai and N. Shimada, "Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
    [CrossRef]
  10. S. Le Floch, F Riou, and P Cambon, "Experimental and theoretical study of the Brillouin linewidth and frequency at low temperature in standard single-mode optical fibers," J. Opt. A; Pure Appl. Opt. 3, L12-L15 (2001).
    [CrossRef] [PubMed]
  11. K. Shiraki, M. Ohashi and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
    [CrossRef]
  12. Y. Wang and Hong Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21,2262-2270 (2003).
    [CrossRef]
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd Edition, (Cambridge University Press, 1992).
  14. D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
    [CrossRef]
  15. For example, the coating used for Simitomo PureEtherTM fibers.
  16. Y. Wang, C.-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
    [CrossRef]

2006 (1)

2004 (1)

Y. Wang, C.-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (3)

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096, (2001).
[CrossRef]

S. Le Floch, F Riou, and P Cambon, "Experimental and theoretical study of the Brillouin linewidth and frequency at low temperature in standard single-mode optical fibers," J. Opt. A; Pure Appl. Opt. 3, L12-L15 (2001).
[CrossRef] [PubMed]

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

1995 (1)

K. Shiraki, M. Ohashi and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

1993 (2)

Y. Imai and N. Shimada, "Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
[CrossRef]

1990 (1)

K. Shiraishi, Y. Aizawa,; S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. of Lightwave Technol. 8, 1151-1161 (1990).
[CrossRef]

1972 (1)

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," App. Opt. 11, 2489-2494 (1972).
[CrossRef]

Aizawa, Y.

K. Shiraishi, Y. Aizawa,; S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. of Lightwave Technol. 8, 1151-1161 (1990).
[CrossRef]

Brown, D. C.

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

Cambon, P

S. Le Floch, F Riou, and P Cambon, "Experimental and theoretical study of the Brillouin linewidth and frequency at low temperature in standard single-mode optical fibers," J. Opt. A; Pure Appl. Opt. 3, L12-L15 (2001).
[CrossRef] [PubMed]

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096, (2001).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096, (2001).
[CrossRef]

Harrison, R. G.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

Imai, Y.

Y. Imai and N. Shimada, "Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

Kawakami, S.

K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
[CrossRef]

Kovalev, V. I.

Le Floch, S.

S. Le Floch, F Riou, and P Cambon, "Experimental and theoretical study of the Brillouin linewidth and frequency at low temperature in standard single-mode optical fibers," J. Opt. A; Pure Appl. Opt. 3, L12-L15 (2001).
[CrossRef] [PubMed]

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096, (2001).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

Po, H.

Y. Wang, C.-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Po, Hong

Riou, F

S. Le Floch, F Riou, and P Cambon, "Experimental and theoretical study of the Brillouin linewidth and frequency at low temperature in standard single-mode optical fibers," J. Opt. A; Pure Appl. Opt. 3, L12-L15 (2001).
[CrossRef] [PubMed]

Shimada, N.

Y. Imai and N. Shimada, "Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

Shiraishi, K.

K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
[CrossRef]

K. Shiraishi, Y. Aizawa,; S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. of Lightwave Technol. 8, 1151-1161 (1990).
[CrossRef]

Shiraki, K.

K. Shiraki, M. Ohashi and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

Smith, R. G.

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," App. Opt. 11, 2489-2494 (1972).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

Wang, Y.

Y. Wang, C.-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Y. Wang and Hong Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21,2262-2270 (2003).
[CrossRef]

Xu, C.-Q.

Y. Wang, C.-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Yanagi, T.

K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
[CrossRef]

App. Opt. (1)

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," App. Opt. 11, 2489-2494 (1972).
[CrossRef]

Electron. Lett. (1)

K. Shiraki, M. Ohashi and M. Tateda, "Suppression of stimulated Brillouin scattering in a fiber by changing the core radius," Electron. Lett. 31, 668-669 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. C. Lee, P. W. Chiang, and S. Chi, "Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift," IEEE Photon. Technol. Lett. 13, 1094-1096, (2001).
[CrossRef]

Y. Wang, C.-Q. Xu, and H. Po, "Thermal effects in kilowatt fiber lasers," IEEE Photon. Technol. Lett. 16, 63-65 (2004).
[CrossRef]

Y. Imai and N. Shimada, "Dependence of stimulated Brillouin scattering on temperature distribution in polarization-maintaining fibers," IEEE Photon. Technol. Lett. 5, 1335-1337 (1993).
[CrossRef]

J. Lightwave Technol. (2)

K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
[CrossRef]

Y. Wang and Hong Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21,2262-2270 (2003).
[CrossRef]

J. of Lightwave Technol. (1)

K. Shiraishi, Y. Aizawa,; S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," J. of Lightwave Technol. 8, 1151-1161 (1990).
[CrossRef]

Opt. Lett. (2)

Pure Appl. Opt. (1)

S. Le Floch, F Riou, and P Cambon, "Experimental and theoretical study of the Brillouin linewidth and frequency at low temperature in standard single-mode optical fibers," J. Opt. A; Pure Appl. Opt. 3, L12-L15 (2001).
[CrossRef] [PubMed]

Other (4)

Y. Jeong, J. Nilsson, J. K. Sahu,  et al, "Single-frequency, polarized ytterbium-doped fiber MOPA source with 264 W output power," CLEO, San Francisco, May. 16-21, (2004), postdeadline paper CPDD1.

O. Shkurikhin, N. S. Platonov, D. V. Gapontsev, R. Yagodkin, V. P. Gapontsev "300W single-frequency, single-mode, all-fiber format ytterbium amplifier operating at 1060-1070-nm wavelength range," 6102-61, Photonics West, San Jose, 21~26 January (2006).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific Computing, 2nd Edition, (Cambridge University Press, 1992).

For example, the coating used for Simitomo PureEtherTM fibers.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Core diameter and NA profile of the nonuniform fiber. Inset: magnified core profile.

Fig. 2.
Fig. 2.

Signal and SBS power as a function of temperature gradient for different length fibers. Pump power: 1600 W; seed power: 10 W; fiber lengths: 5.33 m, 5.16 m, 5 m, and 4.83 m.

Fig. 3.
Fig. 3.

SBS gain versus (a, left) temperature gradient for 30 ?m LMA and nonuniform fibers, and (b, right) fiber length at a temperature gradient of 250 °C.

Fig. 4.
Fig. 4.

(a). SBS spectra at different locations for the nonuniform fiber amplifier.

Fig. 4.
Fig. 4.

(b). SBS spectra at different locations for the conventional 30 μm fiber amplifier.

Tables (1)

Tables Icon

Table 1. Parameters used in the simulation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d P s dz = ( N 2 σ s e N 1 σ s a ) Γ s P s α s a 0 P s P s i = 1 n g SBS i P SBS i A
d P f dz = ( N 2 σ p e N 1 σ p a ) Γ p P f α p a 0 P f
d P b dz = ( N 2 σ p e N 1 σ p a ) Γ p P b + α p a 0 P b
d P SBS i dz = g SBS i P s P SBS i A + α s a 0 P SBS i ( N 2 σ s e N 1 σ s a ) Γ s P SBS i
g in ( v SBS i ) = g 0 Γ 0 2 F 0 F c × [ tan 1 ( F 0 v SBS i Γ 0 2 ) tan 1 ( F c v SBS i Γ 0 2 ) ] ,
g ( v SBS i ) = g 0 Γ 0 2 F 0 F c × [ tan 1 F 0 v SBS i + T c C T Γ 0 2 tan 1 ( F c v SBS i + T c C T Γ 0 2 ) ] ,

Metrics