Abstract

We report on optically-pumped vertical-external-cavity surface-emitting lasers passively mode-locked with a semiconductor saturable-absorber mirror. The potential of harmonic mode-locking in producing pulse trains at multigigahertz repetition rates has been explored. The results present first systematic study of multiple pulse formation in passively mode-locked VECSELs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
    [CrossRef] [PubMed]
  2. S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
    [CrossRef]
  3. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).
  4. Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
    [CrossRef]
  5. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
    [CrossRef]
  6. L. F. Mollenauer, and R. H. Stolen, "The soliton laser," Opt Lett. 9, 13-15 (1984).
    [CrossRef] [PubMed]
  7. J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
    [CrossRef]
  8. A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28,1391-1393 (1992).
    [CrossRef]

2005 (2)

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

2004 (2)

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

2002 (1)

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

1998 (1)

J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
[CrossRef]

1992 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28,1391-1393 (1992).
[CrossRef]

1984 (1)

L. F. Mollenauer, and R. H. Stolen, "The soliton laser," Opt Lett. 9, 13-15 (1984).
[CrossRef] [PubMed]

Aschwanden, A.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Bergman, K.

J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
[CrossRef]

Carey, G.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Collings, B.

J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
[CrossRef]

Ebling, D.

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Garnache, A.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Gini, E.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Grange, R.

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28,1391-1393 (1992).
[CrossRef]

Ha, W.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Häring, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Hoogland, S.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Ippen, E.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Jasim, K.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Keller, U.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Knox, W. H.

J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
[CrossRef]

Lorenser, D.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Maas, D. J. H. C.

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Mollenauer, L. F.

L. F. Mollenauer, and R. H. Stolen, "The soliton laser," Opt Lett. 9, 13-15 (1984).
[CrossRef] [PubMed]

Mooradian, A.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Nathan Kutz, J.

J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
[CrossRef]

Nurmikko, A. V.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Paschotta, R.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28,1391-1393 (1992).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28,1391-1393 (1992).
[CrossRef]

Roberts, J. S.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

Sagnes, I.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

Stolen, R. H.

L. F. Mollenauer, and R. H. Stolen, "The soliton laser," Opt Lett. 9, 13-15 (1984).
[CrossRef] [PubMed]

Tropper, A. C.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Unold, H. J.

A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30,272-274 (2005).
[CrossRef] [PubMed]

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Zhang, Q.

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

Appl. Phys. A (1)

D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards wafer-scale integration of high repetition rate passively mode-locked surface emitting semiconductor lasers," Appl. Phys. A 79,927-932 (2004).

Appl. Phys. B. (1)

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, "Soliton like pulse-shaping in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B. 75,445-451 (2002).
[CrossRef]

Electron. Lett. (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, "Energy quantization in figure eight fibre laser," Electron. Lett. 28,1391-1393 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Nathan Kutz, B. Collings, K. Bergman, and W. H. Knox, "Stabilized pulse spacing in soliton lasers due to gain depletion and recovery," IEEE J. Quantum Electron. 34,1749-1757 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Q. Zhang, K. Jasim, A. V. Nurmikko, A. Mooradian, G. Carey, W. Ha, and E. Ippen, "Operation of a passively mode-locked extended-cavity surface-emitting diode laser in multi-GHz regime," IEEE Photon. Technol. Lett. 16,885-887 (2004).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, "10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 17,267-269 (2005).
[CrossRef]

Opt Lett. (1)

L. F. Mollenauer, and R. H. Stolen, "The soliton laser," Opt Lett. 9, 13-15 (1984).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Low-intensity reflectivity of SESAM.

Fig. 2.
Fig. 2.

Cavity setup of the mode-locked VECSEL

Fig. 3.
Fig. 3.

RF-spectra for the fundamental, 3rd and 6th harmonics.

Fig. 4.
Fig. 4.

Number of harmonic vs. pump power.

Fig. 5.
Fig. 5.

Pulse autocorrelations for different number of pulses circulating in the laser cavity.

Fig. 6.
Fig. 6.

Pulse width for different harmonics.

Fig. 7.
Fig. 7.

Laser spectra for different number of pulses inside the laser cavity.

Fig. 8.
Fig. 8.

Time-bandwidth product dependence on harmonic number (number of pulses circulating in the laser cavity).

Fig. 9.
Fig. 9.

Dynamic evolution of the mode-locked VECSEL parameters. The time span corresponds to one roundtrip. (a) shows the pulse waveform, (b) corresponding VECSEL gain and (c) the saturable absorption. The arrows in Fig. (a) indicate the direction of temporal pulse shift caused by the gain recovery. The length of the arrows is a measure of the pulse ordering strength. The pulse shift is measured in respect to the average time shift.

Fig. 10.
Fig. 10.

Number of mode-locking harmonic versus pump power found from numerical simulation.

Fig. 11.
Fig. 11.

Evolution of 5th-harmonic mode-locking in a VECSEL. The plot (b) shows the evolution of the pulse position with roundtrip number. (a) The pulse power distribution after 100000 and (c) after 1.3×106 roundtrips. The power is given in [gain saturation energy/roundtrip time] ratio and time is normalized to the roundtrip time.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dg ( t ) dt = g ( t ) g 0 τ g g ( t ) P ( t ) E sat , g .
dq ( t ) dt = q ( t ) q 0 τ a q P ( t ) E sat , q ,
E ˜ b ( ω ) = exp ( i / 2 ∙D 2 ω 2 ) exp ( ( ω / ω g ) 2 ) E ˜ a ( ω )

Metrics