Abstract

We demonstrate all-optical logic in a micron-size silicon ring resonator based on the free-carrier dispersion effect in silicon. We show AND and NAND operation at 310 Mbit/s with ∼10-dB extinction ratio. The free-carrier-lifetime-limited bit-rate can be significantly improved by active carrier extraction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  2. Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
    [CrossRef] [PubMed]
  3. Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31, 341-343 (2006).
    [CrossRef] [PubMed]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005).
    [CrossRef] [PubMed]
  5. T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
    [CrossRef]
  6. A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
    [CrossRef]
  7. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
    [CrossRef]
  8. T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
    [CrossRef]
  9. T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NOR gate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
    [CrossRef] [PubMed]
  10. B. E. Little, J. T. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-6 (1997).
    [CrossRef] [PubMed]
  11. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer Micro-Ring Filters and Modulators," J. Lightwave Technol. 20, 1968-1975 (2002).
    [CrossRef]
  12. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  13. S. F. Preble, Q. Xu, B. Schmidt, and M. Lipson, "Ultra-fast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]

2006

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31, 341-343 (2006).
[CrossRef] [PubMed]

2005

2004

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NOR gate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

2003

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

2002

2000

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

1997

1987

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

1983

A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
[CrossRef]

Abedin, K.S.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Almeida, V. R.

Q. Xu, V. R. Almeida, and M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Amarnath, K.

Baets, R.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bogaerts, W.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Calhoun, L. C.

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Chu, S. T.

Coquelin, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Dagens, B.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Dalton, L. R.

Dumon, P.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Fjelde, T.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Gaborit, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Grover, R.

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NOR gate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Guillemot, I.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Haus, H.

A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
[CrossRef]

Ho, P. T.

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NOR gate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Ibrahim, T. A.

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NOR gate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Ippen, E.

A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
[CrossRef]

Kanakaraju, S.

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Kloch, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Kuo, L. C.

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NOR gate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

Kuramochi, E.

Laine, J. T.

Lattes, A.

A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
[CrossRef]

Leonberger, F.

A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
[CrossRef]

Liang, T.K.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Lipson, M.

Little, B. E.

Mitsugi, S.

Miyazaki, T.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Notomi, M.

Nunes, L.R.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Poingt, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Preble, S. F.

Rabiei, P.

Renaud, M.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Schmidt, B.

Shinya, A.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Steier, W. H.

Tanabe, T.

Thourhout, D. V.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Tsang, H.K.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Tsuchiya, M.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Van, V.

Wolfson, D.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

Xu, Q.

Zhang, C.

Electron. Lett.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, "Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter," Electron. Lett. 36, 1863-1864, (2000).
[CrossRef]

IEEE J. Quantum Electron.

A. Lattes, H. Haus, F. Leonberger, E. Ippen, "An ultrafast all-optical gate," IEEE J. Quantum Electron. 19, 1718-1723 (1983).
[CrossRef]

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

T. A. Ibrahim, R. Grover, L. C. Kuo, S. Kanakaraju, L. C. Calhoun, and P. T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003).
[CrossRef]

J. Lightwave Technol.

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Commun.

T.K. Liang, L.R. Nunes, M. Tsuchiya, K.S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H.K. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Top-view SEM picture of the silicon micro-ring resonator before the SiO2 cladding deposition. (b) The transmission spectrum of the resonator. The insets show the zoom-ins around each resonance. The wavelengths of the pump (λc ) and the probes for the AND (λP1 ) and NAND (λP2 ) gates are marked in the insets.

Fig. 2.
Fig. 2.

Transfer function of the all-optical pulse modulation, showing the peak probe transmission immediately after the control pulse versus the control pulse energy inside the silicon waveguide, for the positive modulation (black line) and negative modulation (green line). The inset shows the typical waveform of the probe output for the positive modulation (black line) and negative modulation (green line), respectively.

Fig. 3.
Fig. 3.

Schematics of the experiment setup for all-optical logic using silicon ring resonator. PG: pattern generator; Mod: LiNO3 electro-optical modulator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; Pol: polarizer; ATT: attenuator.

Fig. 4.
Fig. 4.

Waveforms of the control signals and the probe outputs as the logic function of the control signals. (a): waveform of the control input 1. (b): waveform of the control input 2. (c): waveform of the probe light output at λProbe = λP1 as the logic AND of the two control inputs. (d): waveform of the probe light output at λProbe = λP2 as the logic NAND of the two control inputs.

Metrics