Abstract

We propose an optoelectronic time-division demultiplexing scheme based on phase modulation and spectral filtering. The frequency of phase modulation is quarter the bit rate of the optical signal. Therefore, our scheme is applicable to 160-Gbit/s systems by using only a commercially available 40-GHz LiNbO3 phase modulator and optical filter. The power penalties are less than 2 dB for all tributaries, when a 160-Gbit/s signal is demultiplexed by our scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
    [CrossRef]
  2. S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schmidt-Langhorst, C. Schubert, and H. G. Weber, "Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gbit/s," ECOC2004, PDP, Th4-1-1 (2004).
  3. M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, "160 Gbit/s-based field transmission experiments with single-polarization RZ-DPSK signals and simple PMD compensator," ECOC2005, We2.2.1 (2005).
  4. H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, "EA modulator-based optical multiplexing/demultiplexing techniques for 160-Gbit/s OTDM signal transmission," IEICE Trans. Electron. E88-C, 309-318 (2005).
    [CrossRef]
  5. B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
    [CrossRef]

2000

B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

1996

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

Blumenthal, D. J.

B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Fujii, K.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, "EA modulator-based optical multiplexing/demultiplexing techniques for 160-Gbit/s OTDM signal transmission," IEICE Trans. Electron. E88-C, 309-318 (2005).
[CrossRef]

Kagawa, M.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, "EA modulator-based optical multiplexing/demultiplexing techniques for 160-Gbit/s OTDM signal transmission," IEICE Trans. Electron. E88-C, 309-318 (2005).
[CrossRef]

Kawanishi, S.

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

Kitoh, T.

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

Morioka, T.

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

Murai, H.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, "EA modulator-based optical multiplexing/demultiplexing techniques for 160-Gbit/s OTDM signal transmission," IEICE Trans. Electron. E88-C, 309-318 (2005).
[CrossRef]

Öhlén, P.

B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Olsson, B. E.

B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Rau, L.

B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Saruwatari, M.

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

Takara, H.

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

Tsuji, H.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, "EA modulator-based optical multiplexing/demultiplexing techniques for 160-Gbit/s OTDM signal transmission," IEICE Trans. Electron. E88-C, 309-318 (2005).
[CrossRef]

Electron. Lett.

T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, "Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses," Electron. Lett. 32, 833-834 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Olsson, P. Öhlén, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000).
[CrossRef]

Other

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schmidt-Langhorst, C. Schubert, and H. G. Weber, "Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gbit/s," ECOC2004, PDP, Th4-1-1 (2004).

M. Daikoku, T. Miyazaki, I. Morita, H. Tanaka, F. Kubota, and M. Suzuki, "160 Gbit/s-based field transmission experiments with single-polarization RZ-DPSK signals and simple PMD compensator," ECOC2005, We2.2.1 (2005).

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, "EA modulator-based optical multiplexing/demultiplexing techniques for 160-Gbit/s OTDM signal transmission," IEICE Trans. Electron. E88-C, 309-318 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Temporal and spectral waveforms of OTDM pulses before and after phase modulation (PM) and after optical filtering. (a) and (b): temporal and spectral waveforms of the OTDM signal with the bit rate of f sig before PM. (c): PM at the frequency of f sig/4. (d): frequency chirp induced by PM. (e) and (f): temporal and spectral waveforms after PM. (g) and (h): temporal and spectral waveforms after optical filtering.

Fig. 2.
Fig. 2.

Configuration of our demultiplexer consisting of a LiNbO3 phase modulator (LNPM) and an optical bandpass filter (BPF).

Fig. 3.
Fig. 3.

(a). Optical spectra measured before and after PM and after BPF. The scale is expanded in the right hand side. (b). Temporal waveforms measured after BPF.

Fig. 4.
Fig. 4.

Optical spectra (a) and temporal waveforms (b) measured after BPF. λBPF is the offset wavelength of BPF from the center wavelength of the 40-GHz pulse train.

Fig. 5.
Fig. 5.

Design guideline for the phase modulation index and optical bandpass filtering. Optical spectra before (a) and after (b) phase modulation, and transmission spectrum of BPF (c). f sig is the bit rate of the signal pulse, and f PM is the frequency shift induced by phase modulation (PM). f BPF and Δf BPF are the offset frequency and bandwidth of BPF, respectively.

Fig. 6.
Fig. 6.

Experimental setup for 160-Gbit/s demultiplexing using our scheme. P in is the power of the 40-Gbit/s demultiplexed tributary before preamplification.

Fig. 7.
Fig. 7.

(a). Optical spectra measured before and after PM and after BPF. (b). Eye patterns of the 160-Gbit/s data signal and the 40-Gbit/s demultiplexed tributary.

Fig. 8.
Fig. 8.

(a). BERs of the best and worst 10-Gbit/s tributaries. Dots: BERs of demultiplexed tributaries. Open circles: the back-to-back results. Dashed curve: the theoretical BER determined from the ASE-signal beat noise. (b): P in of the 40 Gbit/s tributary before preamplification, at which BERs of the 10-Gbit/s tributaries are 10−9.

Metrics