Abstract

A full set of double-sided power constraints are derived from the single-sided constraints at only two points of each section of a point to point optical link. It is shown that this can be obtained if the input power of the link remains within a feasible range. The two single-sided constraints provide the upper bounds for the gain values of the amplifiers at each module. Therefore, double-sided constraints at all of the points along the link can be obtained by satisfying the gain limits of the amplifiers. Furthermore, unlike the conventional way of considering a unified set of constraints for the entire link, different minimum and maximum power constraints are considered for each section of the link.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Personick, "Fundumental Limits in Optical Communication" Proceedings of the IEEE 69, 2,262-266 (1981).
    [CrossRef]
  2. R-J. Essiambre and P. J. Winzer "Fibre nonlinearities in electronically pre-distorted transmission" ECOC Proceedings, 2, 191-192 (2005).
  3. S. S. Wagner "Optical Amplifier Applications in Fiber Optic Local Networks" IEEE Trans. on Commun. 35, 4,419-426 (1987).
    [CrossRef]
  4. A. Mecozzi, "On Optimization of the Gain Distribution of Transmission Lines with Unequal Amplifier Spacing," Photon. Technol. Lett. 10, 7,1033-1035 (1998).
    [CrossRef]

1998

A. Mecozzi, "On Optimization of the Gain Distribution of Transmission Lines with Unequal Amplifier Spacing," Photon. Technol. Lett. 10, 7,1033-1035 (1998).
[CrossRef]

1987

S. S. Wagner "Optical Amplifier Applications in Fiber Optic Local Networks" IEEE Trans. on Commun. 35, 4,419-426 (1987).
[CrossRef]

1981

S. D. Personick, "Fundumental Limits in Optical Communication" Proceedings of the IEEE 69, 2,262-266 (1981).
[CrossRef]

Mecozzi, A.

A. Mecozzi, "On Optimization of the Gain Distribution of Transmission Lines with Unequal Amplifier Spacing," Photon. Technol. Lett. 10, 7,1033-1035 (1998).
[CrossRef]

Personick, S. D.

S. D. Personick, "Fundumental Limits in Optical Communication" Proceedings of the IEEE 69, 2,262-266 (1981).
[CrossRef]

Wagner, S. S.

S. S. Wagner "Optical Amplifier Applications in Fiber Optic Local Networks" IEEE Trans. on Commun. 35, 4,419-426 (1987).
[CrossRef]

IEEE Trans. on Commun.

S. S. Wagner "Optical Amplifier Applications in Fiber Optic Local Networks" IEEE Trans. on Commun. 35, 4,419-426 (1987).
[CrossRef]

Photon. Technol. Lett.

A. Mecozzi, "On Optimization of the Gain Distribution of Transmission Lines with Unequal Amplifier Spacing," Photon. Technol. Lett. 10, 7,1033-1035 (1998).
[CrossRef]

Proceedings of the IEEE

S. D. Personick, "Fundumental Limits in Optical Communication" Proceedings of the IEEE 69, 2,262-266 (1981).
[CrossRef]

Other

R-J. Essiambre and P. J. Winzer "Fibre nonlinearities in electronically pre-distorted transmission" ECOC Proceedings, 2, 191-192 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Repeater modules of DCF and amplifiers locater along a point to point link

Fig. 2
Fig. 2

Three dimensional demonstration of the minimum and the maximum limits for the input power. Pmin,i = 0.01 mW and Pmax,i = 10 mW for all i from 1 to N

Fig. 3
Fig. 3

Two dimensional illustrations of Fig. 2 for different values of L1, Pmin and Pmax

Tables (1)

Tables Icon

Table 1 Finding PIn,UB, PIn,LB, GLB,i and GUB,i from given span lengths

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

G M , i = 1 Γ i Γ i + 1 Λ i Λ i + 1 1 Γ i + 1 1 Γ i
G M , i = 1 Γ i Γ i + 1
P In P max , i Γ i , LB Γ 1 , UB
P In P max , i Γ i Γ 1
P In P min , i Γ i , LB × Γ 1 , LB
P In P min , i Γ i × Γ 1
P min , i Γ i × Γ 1 P max , i Γ i Γ 1
Ł i 1 α ln ( P min , i P max , i )
G i P max , i P In Γ i
G i ' P In Γ i G M , i P min , i
G i ' P In P min , i Γ i Γ i + 1

Metrics