Abstract

A new method to realize the optical perfect shuffle (PS) with a microoptical array element is presented in this paper. The whole process is simulated by computer, and parameters of the structure to fabricate the experimental component are given. The microoptical array element has been fabricated by introducing very large scale integration (VLSI), stepping photolithography and reactive ion etching (RIE), which can realize 8- channel PS transformation. Experiments, tests and analysis have been done using the array element. The experimental results show that the method proposed in this paper agrees well with theoretical expectation. This success of the experiment lays a good foundation for us to do further research on realization of optical switching and communication through cascade multilevel PS interconnection.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Eichmann and Y. Li, "Compact optical generalized perfect shuffle," Appl. Opt. 26, 1167-1169 (1987).
    [CrossRef]
  2. A. W. Lohmann, W. Stork, and G. Stucke, "Optical perfect shuffle," Appl. Opt. 25, 1530-1531 (1986).
    [CrossRef] [PubMed]
  3. K. H. Brenner and A. Huang, "Optical implementation of the perfect shuffle interconnection," Appl. Opt. 27 (1988).
    [CrossRef] [PubMed]
  4. Y. L. Sheng, "Light effective 2-D optical perfect shuffle using Fresnel mirrors," Appl. Opt. 28, 3290-3292 (1989).
    [CrossRef] [PubMed]
  5. Shaoping Bian, Kebin Xu, and Jing Hong, "Optical perfect shuffle using Wollaston prisms," Appl.Opt. 30, 173-174 (1991).
    [CrossRef] [PubMed]
  6. G. E. Lohman and A. W. Lohmann, "Optical interconnection network utilizing diffraction gratings," Opt. Eng. 27, 893-900 (1988).
  7. C. W. Stirk, R. A. Athale, and M.W. Haney, "Folded perfect shuffle optical processor," Appl.Opt. 27, 202-203 (1988).
    [CrossRef] [PubMed]
  8. K. Hui, Z. Jiangying, and Z. Yuanling, "The implementation of FPS interconnection network using 2-D grating," Acta Optica Sinica (Chinese) 13, 564-567 (1993).
  9. Y.-I. Zhan, H. Kang, and J. -y. Zhang, "Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings," Opt. Eng. 32, 1657-1661 (1993).
    [CrossRef]
  10. Z. Jin and G. Weiqi, "Optical perfect shuffle using CGH element," Acta Optica Sinica (Chinese) 11,477-480 (1991).
  11. H. Kang, Y. Zhan, J. Zhang, X. Huang, and X. Zhu, "Optical perfect-shuffle network implementation by use of an ordinary imaging system and holographic gratings," Appl. Opt. 33, 2988-2990 (1994).
    [CrossRef] [PubMed]
  12. K. Choi and B. Lee, "A single-stage reconfigurable 2-D optical perfect-shuffle network system using multiplexed phase Holograms," IEEE Photon. Technol. Lett. 17, 687-689 (2005).
    [CrossRef]
  13. N. Davidson, A. A. Friesem, and E. Hasman, "Realization of perfect shuffle and inverse perfect shuffle transformations with holographic elements," Appl. Opt. 31, 1810-1812 (1992).
    [CrossRef] [PubMed]
  14. H. Kobolla, J. Schmidt, E. Gluch, and J. Schwider, "Holographic perfect shuffle permutation element for a miniaturized switching network," Appl. Opt. 34, 2844-2847 (1995).
    [CrossRef] [PubMed]
  15. J. Liu, C. Zhao, and R. T. Chen, "Implementation of Optical Perfect Shuffle with Substrate Guilded-Wave Optical Interconnects," IEEE Photon. Technol. Lett. 9, 946-948 (1997).
    [CrossRef]
  16. Y. Baiying, Applied Physics Optics (Engineering Industry Press, China, 1990).
  17. P. Xu,  et al., "Optical perfect shuffle interconnection using computer-generated blazed grating array," Opt. Rev. 2, 362-365 (1995).
    [CrossRef]
  18. P. Xu,  et al., "Deep Etch Binary Optics Element," Acta Optica Sinica (Chinese) 16, 1796-1801 (1996).
  19. P. Xu,  et al., "The even device fabricated by the deep etched binary optics technology for the exposure system of the quasi-molecule laser," Science in China(Series E) 45, 1-9(2002).
    [CrossRef]
  20. P. Xu,  et al., "Fabrication errors analysis and simulation of binary optical element," Acta Optica Sinica (Chinese) 16, 833-838 (1996).
  21. P. Xu,  et al., "Theoretical analysis and design of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 334-340 (2005).
    [CrossRef]
  22. P. Xu,  et al., "Research on experiments of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 374-378 (2005).
    [CrossRef]

2005 (3)

K. Choi and B. Lee, "A single-stage reconfigurable 2-D optical perfect-shuffle network system using multiplexed phase Holograms," IEEE Photon. Technol. Lett. 17, 687-689 (2005).
[CrossRef]

P. Xu,  et al., "Theoretical analysis and design of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 334-340 (2005).
[CrossRef]

P. Xu,  et al., "Research on experiments of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 374-378 (2005).
[CrossRef]

2002 (1)

P. Xu,  et al., "The even device fabricated by the deep etched binary optics technology for the exposure system of the quasi-molecule laser," Science in China(Series E) 45, 1-9(2002).
[CrossRef]

1997 (1)

J. Liu, C. Zhao, and R. T. Chen, "Implementation of Optical Perfect Shuffle with Substrate Guilded-Wave Optical Interconnects," IEEE Photon. Technol. Lett. 9, 946-948 (1997).
[CrossRef]

1996 (2)

P. Xu,  et al., "Fabrication errors analysis and simulation of binary optical element," Acta Optica Sinica (Chinese) 16, 833-838 (1996).

P. Xu,  et al., "Deep Etch Binary Optics Element," Acta Optica Sinica (Chinese) 16, 1796-1801 (1996).

1995 (2)

P. Xu,  et al., "Optical perfect shuffle interconnection using computer-generated blazed grating array," Opt. Rev. 2, 362-365 (1995).
[CrossRef]

H. Kobolla, J. Schmidt, E. Gluch, and J. Schwider, "Holographic perfect shuffle permutation element for a miniaturized switching network," Appl. Opt. 34, 2844-2847 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

K. Hui, Z. Jiangying, and Z. Yuanling, "The implementation of FPS interconnection network using 2-D grating," Acta Optica Sinica (Chinese) 13, 564-567 (1993).

Y.-I. Zhan, H. Kang, and J. -y. Zhang, "Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings," Opt. Eng. 32, 1657-1661 (1993).
[CrossRef]

1992 (1)

1991 (2)

Z. Jin and G. Weiqi, "Optical perfect shuffle using CGH element," Acta Optica Sinica (Chinese) 11,477-480 (1991).

Shaoping Bian, Kebin Xu, and Jing Hong, "Optical perfect shuffle using Wollaston prisms," Appl.Opt. 30, 173-174 (1991).
[CrossRef] [PubMed]

1989 (1)

1988 (3)

K. H. Brenner and A. Huang, "Optical implementation of the perfect shuffle interconnection," Appl. Opt. 27 (1988).
[CrossRef] [PubMed]

G. E. Lohman and A. W. Lohmann, "Optical interconnection network utilizing diffraction gratings," Opt. Eng. 27, 893-900 (1988).

C. W. Stirk, R. A. Athale, and M.W. Haney, "Folded perfect shuffle optical processor," Appl.Opt. 27, 202-203 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

Athale, R. A.

C. W. Stirk, R. A. Athale, and M.W. Haney, "Folded perfect shuffle optical processor," Appl.Opt. 27, 202-203 (1988).
[CrossRef] [PubMed]

Brenner, K. H.

K. H. Brenner and A. Huang, "Optical implementation of the perfect shuffle interconnection," Appl. Opt. 27 (1988).
[CrossRef] [PubMed]

Chen, R. T.

J. Liu, C. Zhao, and R. T. Chen, "Implementation of Optical Perfect Shuffle with Substrate Guilded-Wave Optical Interconnects," IEEE Photon. Technol. Lett. 9, 946-948 (1997).
[CrossRef]

Choi, K.

K. Choi and B. Lee, "A single-stage reconfigurable 2-D optical perfect-shuffle network system using multiplexed phase Holograms," IEEE Photon. Technol. Lett. 17, 687-689 (2005).
[CrossRef]

Davidson, N.

Eichmann, G.

Friesem, A. A.

Gluch, E.

Haney, M.W.

C. W. Stirk, R. A. Athale, and M.W. Haney, "Folded perfect shuffle optical processor," Appl.Opt. 27, 202-203 (1988).
[CrossRef] [PubMed]

Hasman, E.

Huang, A.

K. H. Brenner and A. Huang, "Optical implementation of the perfect shuffle interconnection," Appl. Opt. 27 (1988).
[CrossRef] [PubMed]

Huang, X.

Hui, K.

K. Hui, Z. Jiangying, and Z. Yuanling, "The implementation of FPS interconnection network using 2-D grating," Acta Optica Sinica (Chinese) 13, 564-567 (1993).

Jiangying, Z.

K. Hui, Z. Jiangying, and Z. Yuanling, "The implementation of FPS interconnection network using 2-D grating," Acta Optica Sinica (Chinese) 13, 564-567 (1993).

Jin, Z.

Z. Jin and G. Weiqi, "Optical perfect shuffle using CGH element," Acta Optica Sinica (Chinese) 11,477-480 (1991).

Kang, H.

H. Kang, Y. Zhan, J. Zhang, X. Huang, and X. Zhu, "Optical perfect-shuffle network implementation by use of an ordinary imaging system and holographic gratings," Appl. Opt. 33, 2988-2990 (1994).
[CrossRef] [PubMed]

Y.-I. Zhan, H. Kang, and J. -y. Zhang, "Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings," Opt. Eng. 32, 1657-1661 (1993).
[CrossRef]

Kobolla, H.

Lee, B.

K. Choi and B. Lee, "A single-stage reconfigurable 2-D optical perfect-shuffle network system using multiplexed phase Holograms," IEEE Photon. Technol. Lett. 17, 687-689 (2005).
[CrossRef]

Li, Y.

Liu, J.

J. Liu, C. Zhao, and R. T. Chen, "Implementation of Optical Perfect Shuffle with Substrate Guilded-Wave Optical Interconnects," IEEE Photon. Technol. Lett. 9, 946-948 (1997).
[CrossRef]

Lohman, G. E.

G. E. Lohman and A. W. Lohmann, "Optical interconnection network utilizing diffraction gratings," Opt. Eng. 27, 893-900 (1988).

Lohmann, A. W.

G. E. Lohman and A. W. Lohmann, "Optical interconnection network utilizing diffraction gratings," Opt. Eng. 27, 893-900 (1988).

A. W. Lohmann, W. Stork, and G. Stucke, "Optical perfect shuffle," Appl. Opt. 25, 1530-1531 (1986).
[CrossRef] [PubMed]

Schmidt, J.

Schwider, J.

Sheng, Y. L.

Stirk, C. W.

C. W. Stirk, R. A. Athale, and M.W. Haney, "Folded perfect shuffle optical processor," Appl.Opt. 27, 202-203 (1988).
[CrossRef] [PubMed]

Stork, W.

Stucke, G.

Weiqi, G.

Z. Jin and G. Weiqi, "Optical perfect shuffle using CGH element," Acta Optica Sinica (Chinese) 11,477-480 (1991).

Xu, P.

P. Xu,  et al., "Theoretical analysis and design of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 334-340 (2005).
[CrossRef]

P. Xu,  et al., "Research on experiments of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 374-378 (2005).
[CrossRef]

P. Xu,  et al., "The even device fabricated by the deep etched binary optics technology for the exposure system of the quasi-molecule laser," Science in China(Series E) 45, 1-9(2002).
[CrossRef]

P. Xu,  et al., "Fabrication errors analysis and simulation of binary optical element," Acta Optica Sinica (Chinese) 16, 833-838 (1996).

P. Xu,  et al., "Deep Etch Binary Optics Element," Acta Optica Sinica (Chinese) 16, 1796-1801 (1996).

P. Xu,  et al., "Optical perfect shuffle interconnection using computer-generated blazed grating array," Opt. Rev. 2, 362-365 (1995).
[CrossRef]

Yuanling, Z.

K. Hui, Z. Jiangying, and Z. Yuanling, "The implementation of FPS interconnection network using 2-D grating," Acta Optica Sinica (Chinese) 13, 564-567 (1993).

Zhan, Y.

Zhan, Y.-I.

Y.-I. Zhan, H. Kang, and J. -y. Zhang, "Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings," Opt. Eng. 32, 1657-1661 (1993).
[CrossRef]

Zhang, J.

Zhang, J. -y.

Y.-I. Zhan, H. Kang, and J. -y. Zhang, "Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings," Opt. Eng. 32, 1657-1661 (1993).
[CrossRef]

Zhao, C.

J. Liu, C. Zhao, and R. T. Chen, "Implementation of Optical Perfect Shuffle with Substrate Guilded-Wave Optical Interconnects," IEEE Photon. Technol. Lett. 9, 946-948 (1997).
[CrossRef]

Zhu, X.

Acta Optica Sinica (Chinese) (4)

K. Hui, Z. Jiangying, and Z. Yuanling, "The implementation of FPS interconnection network using 2-D grating," Acta Optica Sinica (Chinese) 13, 564-567 (1993).

Z. Jin and G. Weiqi, "Optical perfect shuffle using CGH element," Acta Optica Sinica (Chinese) 11,477-480 (1991).

P. Xu,  et al., "Deep Etch Binary Optics Element," Acta Optica Sinica (Chinese) 16, 1796-1801 (1996).

P. Xu,  et al., "Fabrication errors analysis and simulation of binary optical element," Acta Optica Sinica (Chinese) 16, 833-838 (1996).

Appl. Opt. (7)

Appl.Opt. (2)

Shaoping Bian, Kebin Xu, and Jing Hong, "Optical perfect shuffle using Wollaston prisms," Appl.Opt. 30, 173-174 (1991).
[CrossRef] [PubMed]

C. W. Stirk, R. A. Athale, and M.W. Haney, "Folded perfect shuffle optical processor," Appl.Opt. 27, 202-203 (1988).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (2)

J. Liu, C. Zhao, and R. T. Chen, "Implementation of Optical Perfect Shuffle with Substrate Guilded-Wave Optical Interconnects," IEEE Photon. Technol. Lett. 9, 946-948 (1997).
[CrossRef]

K. Choi and B. Lee, "A single-stage reconfigurable 2-D optical perfect-shuffle network system using multiplexed phase Holograms," IEEE Photon. Technol. Lett. 17, 687-689 (2005).
[CrossRef]

Opt. Eng. (2)

Y.-I. Zhan, H. Kang, and J. -y. Zhang, "Optical implementation of the folded perfect shuffle interconnection network using quadrant-encoded gratings," Opt. Eng. 32, 1657-1661 (1993).
[CrossRef]

G. E. Lohman and A. W. Lohmann, "Optical interconnection network utilizing diffraction gratings," Opt. Eng. 27, 893-900 (1988).

Opt. Rev. (1)

P. Xu,  et al., "Optical perfect shuffle interconnection using computer-generated blazed grating array," Opt. Rev. 2, 362-365 (1995).
[CrossRef]

Proc. SPIE (2)

P. Xu,  et al., "Theoretical analysis and design of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 334-340 (2005).
[CrossRef]

P. Xu,  et al., "Research on experiments of perfect shuffle implementation using micro-optical array element," Proc. SPIE 5636, 374-378 (2005).
[CrossRef]

Science in China (1)

P. Xu,  et al., "The even device fabricated by the deep etched binary optics technology for the exposure system of the quasi-molecule laser," Science in China(Series E) 45, 1-9(2002).
[CrossRef]

Other (1)

Y. Baiying, Applied Physics Optics (Engineering Industry Press, China, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

PS transformation

Fig. 2.
Fig. 2.

Blazed grating

Fig. 3.
Fig. 3.

Computer-generated PS plate

Fig. 4.
Fig. 4.

Grooves of the PS plate

Fig. 5.
Fig. 5.

Partial cross-sectional profile of the PS plate

Fig. 6.
Fig. 6.

Intensity distribution of input signal

Fig. 7.
Fig. 7.

Intensity distribution of output signal

Fig. 8.
Fig. 8.

Intensity distribution of one input signal

Fig. 9.
Fig. 9.

Output intensity distribution of one input signal

Fig. 10.
Fig. 10.

The experimental setup of PS transformation

Fig. 11.
Fig. 11.

The input signals

Fig. 12.
Fig. 12.

The output signals

Fig. 13.
Fig. 13.

Structure of the runner

Tables (4)

Tables Icon

Table 1. Fabrication data of designed PS plate

Tables Icon

Table 2. Standardized intensity distribution of the input and output signals

Tables Icon

Table 3. Standardized intensity distribution of only one input signal

Tables Icon

Table 4. The analysis of diffraction efficiency and crosstalk to each channel (Unit: %)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ = [ ( n 1 ) p ]
sin ( θ ) = p
Δ y 2 = D , Δ y 3 = 2 D , Δ y 4 = 3 D
L tan ( θ 2 ) = D , L tan ( θ 3 ) = 2 D , L tan ( θ 4 ) = 3 D
p 2 = ( D ) D 2 + L 2 , p 3 = ( 2 D ) 4 D 2 + L 2 , p 4 = ( 3 D ) 9 D 2 + L 2

Metrics